How to calculate magnetic induction just beyond the end of the magnet?

AI Thread Summary
The discussion centers on calculating the magnetic induction just beyond the end of a bar magnet using the limit expression provided. There is confusion regarding the limit approaching infinity when substituting r with l. It is clarified that the expression was derived under the assumption that r is much greater than l, making it inappropriate for r approaching l. Instead, substituting r with l plus a small increment (epsilon) provides a more accurate approach. The key takeaway is to revisit the original equation for better insights into the behavior of the magnetic induction near the magnet's end.
Lotto
Messages
251
Reaction score
16
Homework Statement
Calculate magnetic induction just beyond the end of a bar magnet on its axis
Relevant Equations
$$B=\frac{\mu}{4\pi}\cdot \frac{4rml}{{\left({r}^2-l^2\right)}^2},$$ where r → l.
Last edited:
Physics news on Phys.org
Lotto said:
Homework Statement:: Calculate magnetic induction just beyond the end of a bar magnet on its axis
Relevant Equations:: $$B=\frac{\mu}{4\pi}\cdot \frac{4rml}{{\left({r}^2-l^2\right)}^2},$$ where r → l.

I know I should use a limit $$B=\lim_{r\to l}{\frac{\mu}{4\pi}\cdot \frac{4rml}{{\left({r}^2-l^2\right)}^2}},$$,but in Wolfram I get a weird solution. https://www.wolframalpha.com/input?i2d=true&i=Limit[Divide[4rl,Power[\(40)Power[r,2]-Power[l,2]\(41),2]],r->l]

What is the solution? It shouldn't be infinity.
According to the expression you quoted, it should be infinity. Note that you are asked to find the magnetic induction just beyond the end of the magnet, not at the end of the magnet. Also, I think your expression was derived in the limit ##r>>l## so you can't do much with it when ##r\approx l##. You need to go back to the original expression from which your equation was derived and see what you get when you substitute ##r=l+\epsilon## with ##\epsilon/l <<1##.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top