How to calculate magnetic induction just beyond the end of the magnet?

AI Thread Summary
The discussion centers on calculating the magnetic induction just beyond the end of a bar magnet using the limit expression provided. There is confusion regarding the limit approaching infinity when substituting r with l. It is clarified that the expression was derived under the assumption that r is much greater than l, making it inappropriate for r approaching l. Instead, substituting r with l plus a small increment (epsilon) provides a more accurate approach. The key takeaway is to revisit the original equation for better insights into the behavior of the magnetic induction near the magnet's end.
Lotto
Messages
251
Reaction score
16
Homework Statement
Calculate magnetic induction just beyond the end of a bar magnet on its axis
Relevant Equations
$$B=\frac{\mu}{4\pi}\cdot \frac{4rml}{{\left({r}^2-l^2\right)}^2},$$ where r → l.
Last edited:
Physics news on Phys.org
Lotto said:
Homework Statement:: Calculate magnetic induction just beyond the end of a bar magnet on its axis
Relevant Equations:: $$B=\frac{\mu}{4\pi}\cdot \frac{4rml}{{\left({r}^2-l^2\right)}^2},$$ where r → l.

I know I should use a limit $$B=\lim_{r\to l}{\frac{\mu}{4\pi}\cdot \frac{4rml}{{\left({r}^2-l^2\right)}^2}},$$,but in Wolfram I get a weird solution. https://www.wolframalpha.com/input?i2d=true&i=Limit[Divide[4rl,Power[\(40)Power[r,2]-Power[l,2]\(41),2]],r->l]

What is the solution? It shouldn't be infinity.
According to the expression you quoted, it should be infinity. Note that you are asked to find the magnetic induction just beyond the end of the magnet, not at the end of the magnet. Also, I think your expression was derived in the limit ##r>>l## so you can't do much with it when ##r\approx l##. You need to go back to the original expression from which your equation was derived and see what you get when you substitute ##r=l+\epsilon## with ##\epsilon/l <<1##.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top