jdstokes
- 520
- 1
Let n be a positive integer, and define the function
f_n(x_1,x_2,\ldots, x_n) = \left( <br /> \begin{array}{ccccc}<br /> 1 & 1 & 1 & \ldots & 1 \\<br /> x_1 & x_2 & x_3 & \ldots & x_n \\<br /> x_1^2 & x_2^2 & x_3^2 & \ldots & x_n^2 \\<br /> \vdots & \vdots & \vdots & \ddots & \vdots \\<br /> x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \ldots & x_n^{n-1}<br /> \end{array}<br /> \right)
(b) By considering the first column expansion of the determinant, show that
f_n(x_1,x_2,\ldots,x_2) = g_0 + g_1x_1 + g_2x_1^2 + \cdots + g_{n-1}x_1^{n-1}, and, in particular, g_{n-1}=(-1)^{n-1}f_{n-1}(x_2,x_3,\ldots,x_n)
(c) Show that f_n(x_1,x_2,\ldots,x_2) has x_i-x_1 as a factor, for all values of i from 2 to n.
I think I've sorted part (b) out. I don't have a clue about how to proceed in part (c).
Thanks.
James
f_n(x_1,x_2,\ldots, x_n) = \left( <br /> \begin{array}{ccccc}<br /> 1 & 1 & 1 & \ldots & 1 \\<br /> x_1 & x_2 & x_3 & \ldots & x_n \\<br /> x_1^2 & x_2^2 & x_3^2 & \ldots & x_n^2 \\<br /> \vdots & \vdots & \vdots & \ddots & \vdots \\<br /> x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \ldots & x_n^{n-1}<br /> \end{array}<br /> \right)
(b) By considering the first column expansion of the determinant, show that
f_n(x_1,x_2,\ldots,x_2) = g_0 + g_1x_1 + g_2x_1^2 + \cdots + g_{n-1}x_1^{n-1}, and, in particular, g_{n-1}=(-1)^{n-1}f_{n-1}(x_2,x_3,\ldots,x_n)
(c) Show that f_n(x_1,x_2,\ldots,x_2) has x_i-x_1 as a factor, for all values of i from 2 to n.
I think I've sorted part (b) out. I don't have a clue about how to proceed in part (c).
Thanks.
James