How to combine integration equation in Python?

  • Thread starter Nur Ziadah
  • Start date
Summary
I'm calculating key rate (R^Rate-wise) by integrating R(eta) over all possible eta from 0 to 1, with a probability distribution (PDTC) which is a log-normal distribution using Python language.
I'm calculating key rate (R^Rate-wise) by integrating R(eta) over all possible eta from 0 to 1, with a probability distribution (PDTC) which is a log-normal distribution.

The equation of log-normal distribution:
243810


The equation of R(eta):
243811


Therefore, R^Rate-wise = Integrate_0^1(R(eta)*P(eta)*d eta):
243812


This is Python code of log-normal distribution:
Python:
x=np.linspace(0,1,1000)
sigma0=[0.9]
color=['green']
for i in range(len(sigma0)):
    sigma=sigma0[i]
    y=1/(x*sigma*np.sqrt(2*np.pi))*np.exp(-(np.log(x/0.3)+(1/2*sigma*sigma))**2/(2*sigma*sigma))
    plt.plot(x,y,color[i])
plt.title('Lognormal distribution')
plt.xlabel('x')
plt.ylabel('lognormal density distribution')
#plt.xlim((0,0.002))
plt.ylim((0,5))
plt.show()
This is Python code of R(eta):
Python:
n1=np.arange(10, 55, 1)
n=10**(-n1/10)


Y0=1*(10**-5)
nd=0.25
ed=0.03
nsys=nd*n
QBER=((1/2*Y0)+(ed*nsys))/(Y0+nsys)
H2=-QBER*np.log2(QBER)-(1-QBER)*np.log2(1-QBER)
Rsp=np.log10((Y0+nsys)*(1-(2*H2)))
print (Rsp)

plt.plot(n1,Rsp)
plt.xlabel('Loss (dB)')
plt.ylabel('log10(Rate)')
plt.show()
My question is how to integrate R(eta) over possible eta from 0 to 1? The output should be in the following figure (R^Rate-wise):

243813


The referred article can be find in this link: https://arxiv.org/pdf/1712.08949.pdf

Thank you so much.
 

phyzguy

Science Advisor
4,111
1,125
I usually use the scipy.integrate function quad to do numerical integration in Python. You will need to define a function which defines the integrand.
 

Want to reply to this thread?

"How to combine integration equation in Python?" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving
Top