How to Correctly Simplify This Boolean Expression?

  • Thread starter Thread starter torx11
  • Start date Start date
  • Tags Tags
    Simplifying
torx11
Messages
1
Reaction score
0

Homework Statement


Simplify the following
xyz + x'(w+z') + yz(w+z')


Homework Equations





The Attempt at a Solution


xyz + x'(w + z') + yz(w + z')
xyz + x'w + x'z' + yz(w + z')
xyz + x'w + x'z' + yzw + yzz'
xyz + x'w + x'z' + yzw + 0

I got the answer xyz + x'w + x'z' + yzw

However in the book it says the answer is xyz + x'w + x'z'. How could that be? I don't see any way of getting rid of yzw. Please tell me if this is correct or I need to fix something. Thank you.
 
Physics news on Phys.org
If y=z=w=1, just the first three terms will evaluate to 1, regardless of what x equals, so yzw is apparently hidden in there.

Use xyz + x'w + x'z' + yzw = xyz + x'w + x'z' + yzw(x+x'). Multiply the last term out and then simplify.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top