matematikuvol
- 190
- 0
##\mathcal{L}\{f(t)\}=F(s)##
\mathcal{L}\{e^{at}\}=\frac{1}{s-a},Re(s)>a
\mathcal{L}\{\sin (at)\}=\frac{a}{s^2+a^2}, \quad Re(s)>0
\mathcal{L}\{\cos (at)\}=\frac{s}{s^2+a^2},Re(s)>0
If we look at Euler identity ##e^{ix}=\cos x+i\sin x##, how to get difference converge intervals ##Re(s)>a## and ##Re(s)>0##?
\mathcal{L}\{e^{at}\}=\frac{1}{s-a},Re(s)>a
\mathcal{L}\{\sin (at)\}=\frac{a}{s^2+a^2}, \quad Re(s)>0
\mathcal{L}\{\cos (at)\}=\frac{s}{s^2+a^2},Re(s)>0
If we look at Euler identity ##e^{ix}=\cos x+i\sin x##, how to get difference converge intervals ##Re(s)>a## and ##Re(s)>0##?