How to Determine if a Point Lies Inside a Tilted and Translated Ellipse?

  • Thread starter Thread starter Sleeker
  • Start date Start date
  • Tags Tags
    Ellipse
Sleeker
Messages
7
Reaction score
0
I need to find whether or not a point is within an ellipse. The problem is that the ellipse is tilted at an angle and not at the origin. I've tried Googling everywhere and can't find a good equation for what I need. Does anybody know the formula for an ellipse that includes:

1. Coordinates of the ellipse's center
2. Length of major axis (diameter or radius)
3. Length of minor axis (diameter or radius)
4. Angle the ellipse is tilted relative to x or y-axis (doesn't matter which, I can figure it out from there).

I'm doing astronomical research, and I'm trying to locate points within galaxies which are shaped like ellipses. The four things I listed are the things I am given.

Edit: I know I can translate and rotate my ellipse, but I would really like just one formula since I need to do this approximately 2,500 times for my astronomical research.

Another edit: Maybe this?

(\frac{x cos\theta+y sin\theta - x_c}{a})^2 + (\frac{x sin\theta-y cos\theta - y_c}{b})^2 = 1

a = major axis (radial)
b = minor axis (radial)
x_c = x coordinate of center
y_c = y coordinate of center
\theta = Angle of tilt from x-axis

I kind of just mixed and matched formulas until I think I incorporated everything. Is it right?
 
Last edited:
Mathematics news on Phys.org
It may be simplest to compute a change of coordinates that tranforms to a coordinate system where the ellipse is not tilted. Then apply the change of coordinates to the points in question and solve the problem in the simpler setting.
 
Try this:

\frac{((x-x_c)\cos\theta + (y-y_c)\sin\theta)^2}{a^2}+<br /> \frac{((x-x_c)\sin\theta - (y-y_c)\cos\theta)^2}{b^2}=1
 
Hm, yeah, that makes more sense with incorporating the fact that it's off-center with the formula from this website:

http://www.maa.org/joma/Volume8/Kalman/General.html
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top