How to determine linear force from rotational force?

AI Thread Summary
To determine the linear force required for a mechanism that raises and lowers a platform, it's essential to know the weight of the platform, which can be estimated based on materials and dimensions. The motor's strength, typically rated in ounce/inches or gram/centimeters, can be converted to linear force using the formula: motor power (W) = Linear Force (Newtons) x Linear Velocity (meters/second). Accurate calculations of the required force are crucial for selecting the appropriate stepper motor and designing the rack-and-pinion system, as they directly influence the stress on components. Designing with 3D CAD can help calculate the weight, aiding in the overall design process. Understanding these factors ensures the safety and effectiveness of the mechanism.
mikegrundvig
Messages
1
Reaction score
0
Hi all; I'm building a mechanism that will raise and lower a small platform but I need to determine how much force is needed. Sadly, until the platform is built and set up I won't know how heavy it will be so I'm trying to just determine how to calculate the force various motors can put out so I can pick them correctly when I'm ready.

Basically, I'd like to use a rack-and-pinion combined with a stepper motor to handle the movement. I THINK this is a simple question, I have the strength of the stepper motors available in either ounce/inches or gram/centimeters and conversion between them is simple enough. The problem is that I have no idea how to convert that motor rating to linear "strength" or "holding point" based on a rack-and-pinion design. I'll be machining both the rack and the pinion so I'm completely flexible on the tooth size and count. BTW - here is a sample of the type of motors I'd like to use:
http://www.jameco.com/Jameco/catalogs/c111/P113.pdf

Any help or guidance here would be greatly appreciated. Thanks!

-Mike
 
Engineering news on Phys.org
Mike,

you could use;

motor power (W) = Linear Force from platform (Newtons) x Linear Velocity of platform (metres per second) = ...(Watts)

There are other ways of calculating it I'm sure, but this is quite simple.Adam
 
1988 ajk give you the answer and for "Sadly, until the platform is built and set up I won't know how heavy it will be ". You can estimate it if you know what materials are been used and the size (dimensions) of platform
 
If you don't know the force your lifting you can't choose a motor, and you definitely cannot machine a rack and pinion as you have no idea of the stress the components will be under, which will help you choose the correct module etc.

the weight of the platform is the most important starting point of your design calculations, so that you can design all components around this force. this will ensure your system is SAFE

Note; if you have designed it with 3d CAD the weight is calculated for you...
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Back
Top