Above, I wrote:
EnumaElish said:
[Note that the distance function approach depends on a geometrical correspondence between the two images that the regression approach ignores -- to follow the permutation example in your post, in a case where the distance approach produces an arithmetic difference between the original and the permuted images, the regression approach will not.]
I did not mean to imply that the distance approach will always produce a nonzero mean difference -- in fact, if the permutation is random then the expected (true mean) difference is zero, as the following example illustrates:
y , RandomRank , y* , d
0.019433061 , 7 , 0.290617864 , -0.271184804
0.114136996 , 14 , 0.264838615 , -0.150701619
0.136433932 , 8 , 0.333835024 , -0.197401092
0.138333371 , 4 , 0.138333371 , 0
0.19700036 , 13 , 0.312202404 , -0.115202044
0.264838615 , 2 , 0.705108738 , -0.440270123
0.290617864 , 1 , 0.019433061 , 0.271184804
0.312202404 , 5 , 0.136433932 , 0.175768472
0.317085208 , 16 , 0.99010499 , -0.673019782
0.333835024 , 3 , 0.662772917 , -0.328937893
0.567207525 , 20[/color] , 0.974873342 , -0.407665817
0.650723461 , 17 , 0.834248815 , -0.183525355
0.662772917 , 10 , 0.19700036 , 0.465772557
0.679963742 , 15 , 0.114136996 , 0.565826746
0.705108738 , 6 , 0.679963742 , 0.025144996
0.834248815 , 12 , 0.317085208 , 0.517163608
0.850628183 , 19 , 0.650723461 , 0.199904722
0.960884675 , 18 , 0.960884675 , 0
0.974873342 , 11 , 0.850628183 , 0.124245159
0.99010499 , 9 , 0.567207525[/color] , 0.422897465
Above, y is the original measurement, y* is the re-ordered measurement (y values re-ordered according to a random rank assigned to the original value), and d = y - y*. It can be verified that d averages out to nearly zero.