MHB How to Determine the Joint Distribution of X+Y and X-Y?

  • Thread starter Thread starter oyth94
  • Start date Start date
  • Tags Tags
    Joint
AI Thread Summary
To determine the joint distribution of X+Y and X-Y, where X and Y are defined based on uniform samples u1 and u2, the possible values for X+Y are 0, 1, and 2, while X-Y can take values -1, 0, and 1. The joint probability mass function (pmf) needs to be calculated for these combinations, such as the probability of X-Y being -1 and X+Y being 1, which is found to be 1/6. The discussion emphasizes the importance of clearly defining the variables and calculating the probabilities for each case to complete the joint distribution. Overall, the focus is on deriving the pmf for the specified combinations of X+Y and X-Y.
oyth94
Messages
32
Reaction score
0
Suppose u1 and U2 are a sample from Unif(0,1).
X= 1{u1<=1/2} , Y=1{u2<=1/3}
Get the joint dist of X+Y and X-Y
Is it jointly discrete or jointly abs cont?

How do info about finding the joint dist??
 
Mathematics news on Phys.org
oyth94 said:
Suppose u1 and U2 are a sample from Unif(0,1).
X= 1{u1<=1/2} , Y=1{u2<=1/3}
Get the joint dist of X+Y and X-Y
Is it jointly discrete or jointly abs cont?

How do info about finding the joint dist??

So first of all, you weren't very clear with your notation, so first I'd like to check that I understand what you mean.

We say that
$$
X = \begin{cases} 1 &\mbox{if } u_1 \leq \frac12 \\
0 & \mbox{otherwise } \end{cases}
$$
and
$$
Y = \begin{cases} 1 &\mbox{if } u_2 \leq \frac13 \\
0 & \mbox{otherwise } \end{cases}
$$
Where $u_1$ and $u_2$ are independently sampled from a uniform distribution over $(0,1)$. Your goal is to find the joint distribution of $X+Y$ and $X-Y$. Is that correct?
 
TheBigBadBen said:
So first of all, you weren't very clear with your notation, so first I'd like to check that I understand what you mean.

We say that
$$
X = \begin{cases} 1 &\mbox{if } u_1 \leq \frac12 \\
0 & \mbox{otherwise } \end{cases}
$$
and
$$
Y = \begin{cases} 1 &\mbox{if } u_2 \leq \frac13 \\
0 & \mbox{otherwise } \end{cases}
$$
Where $u_1$ and $u_2$ are independently sampled from a uniform distribution over $(0,1)$. Your goal is to find the joint distribution of $X+Y$ and $X-Y$. Is that correct?

Yes that is what I meant! I tried the question for X+Y and got 0,1,2
For X-Y I got -1,0,1
Why do I do next?
 
oyth94 said:
Yes that is what I meant! I tried the question for X+Y and got 0,1,2
For X-Y I got -1,0,1
Why do I do next?

So as you rightly stated, $X+Y$ can be 0,1, or 2, and $X-Y$ can be -1,0,1. What they're asking for now is a probability mass function (pmf) on these two variables, which I'll call $f(x,y)$. That is, for a given $(a,b)$, we need to be able to figure out the probability that $X+Y=a$ and $X-Y=b$.

So, for example: the probability that $X-Y=-1$ and $X+Y=1$ is $\frac12 \cdot \frac13 = \frac 16$, since this will only happen when $X=0$ (which has probability $\frac12$) and $Y=1$ (which has probability $\frac13$). So, we would say that for our joint pmf $f(x,y)$, we have $f(-1,1)=\frac16$. The value of our joint probability distribution at $(-1,1)$ is $\frac16$.

Does that help? Can you finish the problem from there?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top