How to Diagonalize a Hamiltonian Using Bogoliubov Transformation?

  • Thread starter Thread starter CMJ96
  • Start date Start date
  • Tags Tags
    Transformation
CMJ96
Messages
50
Reaction score
0

Homework Statement


I'd like to diagonalise the following Hamiltonian for quasiparticle excitations in a Bose Einstein Condensate
$$H= K_0 + \hat{K}_1 + \hat{K}_2 $$
where
$$K_0 = \int d^3 r \left[ \phi_0 ^* (\hat{h}_0- \mu) \phi_0 + \frac{g}{2} |\phi_0| ^4 \right]$$
$$\hat{K}_1= \int d^3 r \left[ \hat{\delta}^{\dagger} (\hat{h}_0 + g| \phi_0 |^2 - mu) \phi_0 +\phi_0 ^* (\hat{h}_0 + g| \phi_0 | ^2 - \mu ) \hat{\delta} \right] $$
$$\hat{K}_2= \int d^3 r \left[ \hat{\delta}^{\dagger} (\hat{h}_0 + 2g| \phi_0 |^2 - \mu ) \hat{\delta} + \frac{g}{2} (( \phi_0 ^*)^2 \hat{\delta} \hat{\delta} + \phi_0 ^2 \hat{\delta} ^{\dagger} \hat{\delta} ^{\dagger} ) \right] $$
Eventually reaching the following form for ##K_2##
$$K_2= \sum_i \epsilon_i \beta_i ^{\dagger} \beta_i - \sum_i \epsilon _i \int d^3 r |v_i |^2 $$

Homework Equations


I'd like to do this using the following Bogoliubov transformation
$$ \hat{\delta} = \sum_i \left[ u_i \hat{\beta} _i + v_i ^* \hat{\beta}_i ^{\dagger} \right] $$

The Attempt at a Solution


Subbing in the expression for ##\delta## into the Hamiltonian I got the following focusing on the K1 and K2 terms.
$$K_1= \int d^3 r \sum_i (u_i^* \beta_i ^{\dagger} + v_i \beta_i ) (h_0 + g| \phi_0 |^2 - \mu ) \phi_0 + \phi_0 ^* ( \hat{h}_0 +g | \phi_0 |^2 - \mu) (u_i \beta_i + v_i ^* \beta_i ^{\dagger} )$$
$$K_2 = ( h_0 + 2g | \phi_0 |^2 - \mu ) \int d^3 r \sum_{i j} \left[u_i ^* u_j \beta_i ^{\dagger} \beta_j + u_i ^* v_j ^* \beta_i ^{\dagger} \beta_j ^{\dagger} + v_i u_j \beta_i \beta_j + v_i v_j ^* \beta_i \beta_j ^{\dagger} \right] + \frac{g}{2} (\phi_0 ^* )^2 \sum_{i j} \int d^3 r \left[ u_i u_j \beta_i \beta_j +u_i v_j ^* \beta_i \beta_j ^{\dagger} + v_i ^* u_j \beta_i ^{\dagger} \beta_j + v_i ^* v_j ^* \beta_i ^{\dagger} \beta_j ^{\dagger}\right]+ \frac{g}{2} (\phi_0)^2 \sum_{i j} \int d^3 r \left[ u_i ^* u_j ^* \beta_i^{\dagger} \beta_j ^{\dagger} +u_i ^* v_j \beta_i ^{\dagger} \beta_j + v_i u_j ^* \beta_i \beta_j ^{\dagger} + v_i v_j \beta_i \beta_j \right] $$
Defining ##L= h_0+2g | \phi_0 |^2 - \mu ## and grouping the terms based upon what coefficient of ##\beta## they have I got the following terms (omitting the integral and sums)
for ##\beta_i \beta_j##
$$\beta_i \beta_j \left[ L v_i u_j + \frac{g}{2} | \phi_0| ^2 (u_i u_j +v_i v_j ) \right] $$
for ## \beta_i ^{\dagger} \beta_j ##
$$\beta_i ^{\dagger} \beta_j \left[L u_i ^* u_j + \frac{g}{2} | \phi_0 |^2 (v_i ^* u_j + u_i ^* v_j ) \right] $$
for ## \beta_i \beta_j ^{\dagger}##
$$\beta_i \beta_j ^{\dagger} \left[ L v_i v_j ^* + \frac{g}{2} | \phi_0 | ^2 (u_i v_j ^* + v_i u_j ^* ) \right] $$
for ## \beta_i ^{\dagger} \beta_j ^{\dagger} ##
$$\beta_i ^{\dagger} \beta_j ^{\dagger} \left[L u_i ^* v_j ^* + \frac{g}{2} | \phi_0 |^2 (v_i ^* v_j ^* + u_i ^* u_j ^* ) \right] $$
I'm not sure how to proceed, for reference I'm using Alexander Fetters 1972 paper "Nonuniform States of an Imperfect Bose Gas" to help me work through this (I'm using slightly different notation though)
 
Physics news on Phys.org
Hmm... I need more information. What are ##\phi_0## and ##\hat h_0## ?
 
Hi, a field operator has been used and split up into two parts, the condensate part and the non-condensate part ## \hat{\psi}= \hat{\phi} + \hat{\delta} ## , ##\hat{ \phi}## is the condensate and ##\hat{\delta} ## is the non-condensate. A Bogoliubov approximation was made so ##\hat{\phi}## becomes ## \sqrt{N_0} \phi_0 ## because were talking about fluctuations this condensate wavefunction is denoted by the subscript ##0## to show it's in the ground state
$$\hat{h}_0 = -\frac{\hbar^2}{2m} \nabla^2 + V_{ext} $$
 
Last edited:
That's still insufficiently-detailed information, but anyway...

With a BT, one gets constraints on the ##u_i, v_i## by requiring that the new operators satisfy the same canonical commutation relations as the original operators.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top