How to Differentiate a Scalar Potential?

Safinaz
Messages
255
Reaction score
8

Hello,

I have this potential:

## V(\chi) = \frac { F ’’ (\chi) [ 2 F(\chi) - \chi F’ (\chi) ]}{ (F’(\chi))^3} ##

How to get

## \frac{ d V(\chi)}{d \chi} = \frac{ \chi F’’ + F’ - F’ }{ F’^2} - 2 \frac{ \chi F’ -F }{ F’^3} F’’ ~~~~~~(*)##

My trail,

## V( \chi) = 2 F F’’ F’^{-3} - \chi F’’ F’^{-2} ##

## \frac{ d V(\chi)}{d \chi} = 2 F’’ F’^{-2} + 2 F F’’’ F’^{-3} - 6 F F’’^2 F’^{-4} - F’’ F’^{-2} - \chi F’’’ F’^{-2} + 2 \chi F”^2 F’^{-3} ##,

which is not close to (*) !
 
Physics news on Phys.org
Can you explain where each of your terms came from? I assume you're using the product rule but you have a product of three terms, so the application of the product rule is going to be more complex. Can you show more steps?

Also, your expression has ##F'''## which I'd expect given that ##V(x)## has terms in ##F''##. Yet ##F'''## doesn't appear in what you say is the answer. Also, the first term in (*) has F' - F' in the numerator. I assume that is a typo and one of those has the wrong number of primes on it.

So can you also check what the correct answer is supposed to be?
 
  • Like
Likes Safinaz
Hi,

I have added here the reference, I’m asking how to derive equation (9) when differentiataing (5) in https://arxiv.org/abs/1809.09975

hope this helps
 
What you wrote as ##V(\chi)## is equation (5) for ##dV/d\chi##, the derivative of (4) with respect to ##\chi##.
What you wrote as (*) is the term in square brackets in (9), which supposedly represents ##dV/d\chi## (ignoring the constant up front as you did). Thus the authors are saying it's the same as (5), not the derivative of (5).

So all they're doing is algebraic rearranging of the expression in (5), no extra differentiating happened.
 
Last edited:
  • Like
Likes Safinaz
I showed a derivation which does indeed go from (5) to the expression in [*] by algebraic manipulation, but I have deleted it temporarily. I don't think this is homework since you're just trying to read an online paper, but you did post it in a homework forum, and the policy of this site is not to give answers to homework.

You can repeat what I did by taking the expression in (*) and rearranging it to get to equation (5). Then simply do the steps in reverse.
 
RPinPA said:
What you wrote as ##V(\chi)## is equation (5) for ##dV/d\chi##, the derivative of (4) with respect to ##\chi##.
What you wrote as (*) is the term in square brackets in (9), which supposedly represents ##dV/d\chi## (ignoring the constant up front as you did). Thus the authors are saying it's the same as (5), not the derivative of (5).

So all they're doing is algebraic rearranging of the expression in (5), no extra differentiating happened.

Yep.. this is true .. thanks.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top