KillerZ
- 116
- 0
Homework Statement
Find a solution of x\frac{dy}{dx} = y^{2} - y that passes through the indicated points.
a) (0,1)
b) (0,0)
c) (1/2 , 1/2)
d) (2, 1/4)
Homework Equations
x\frac{dy}{dx} = y^{2} - y
The Attempt at a Solution
x\frac{dy}{dx} = y^{2} - y
\frac{dy}{y^{2} - y} = \frac{dx}{x}
\int\frac{dy}{y^{2} - y} = \int\frac{dx}{x}
\int\frac{dy}{y(y - 1)} = ln|x| + c
I used partial fractions to solve the left:
\int\left(\frac{1}{y - 1} - \frac{1}{y}\right)dy = ln|x| + c
\int\frac{1}{y - 1}dy - \int\frac{1}{y}dy = ln|x| + c
\int\frac{1}{y - 1}dy - ln|y| = ln|x| + c
u = y - 1
du = dy
\int\frac{1}{u}du - ln|y| = ln|x| + c
ln|u| - ln|y| = ln|x| + c
ln|y - 1| - ln|y| = ln|x| + c
ln|\frac{y - 1}{y}| = ln|x| + c
\frac{y - 1}{y} = e^{ln|x| + c} = (e^{ln|x|})(e^{c})
\frac{y - 1}{y} = |x|(e^{c})
\frac{y - 1}{y} = \pm(e^{c})(x)
\frac{y - 1}{y} = c(x)
Now this is where I am confused:
a) (0, 1)
\frac{1 - 1}{1} = c(0)
0 = 0
Does this mean c = 0 or does it mean that there is no solution through the point (0, 1) or that there is a solution through the point as left = right?