How to Find the Area of a Triangle Using Basic Trigonometry?

  • Thread starter Thread starter MechatronO
  • Start date Start date
  • Tags Tags
    Trigonometry
MechatronO
Messages
30
Reaction score
1
We got a circle with a radius R.

From a distance D from the centerpoint a line is inserted at an offset angle A1 from a line drawn though the centerpoint C of the circle, see the picture below.

http://cdn.imghack.se/medium/0861cdab13b8957018f8e167342f2b8e.png

I would like the are of the red triangle, provided D, R and A1.

I drew another triangle with one of its corner in the circles center for help, extracted the angle A2, got H and could then solve the problem but. However I wonder if there is a neater way than this.

What I did:

A3 = 180°-A1

Law of cosines give

sin (A3) / R = (sin A4) /D

A4 = arcsin( sin(A3) * D/R ) = arcsin( sin(180°-A1) * D/R)

A2 = 180° - A3 - A4 = 180° - (180°-A1) - arcsin( sin(180°-A1) * D/R) =

= A1 - arcsin( sin(A1)* D/R)

sin(A1) = H/R

H= R*sin(A1)

cos(A2) = (B+D)/R

B= R*cos(A2) -D

The red area = B*H/2 = (R*cos(A2)-D)*R*sin(A2)/2

And so forth. However, I get the feeling that this solution is more complicated than necessary?

EDIT: Btw the circle hasn't got much to do with the problem, but I'm just using it in a next step.
 
Mathematics news on Phys.org
What you call the Law of Cosines is actually the Law of Sines.
 
Typo.

More suggestions?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top