MHB How to Find the GCD and LCD in Mathematics?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Gcd Lcd
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$$\tiny{g1.1.2 \qquad UHW412}$$
\begin{align*}\displaystyle
S&=gcd(2^4\cdot3^2\cdot 5\cdot 7^2,2\cdot3^3\cdot 7\cdot 11)\\
&=gcd(35280,4158)\\
W|A&=126\\
\end{align*}

ok I tried to find a direct example but the powers and bases are mixed
the answer came from W|A

just interested in what steps are the normal protocol for this
 
Physics news on Phys.org
I would look at all factors present, and take the smaller power present in each:

$$2\cdot3^2\cdot7=126$$
 
what about 5 and 11
 
karush said:
what about 5 and 11
Only use the primes that are in both. So we ignore the 5 and 11.

-Dan
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...

Similar threads

Back
Top