How to find the integral of (3x^3 - 1)/x from 1 to e

  • Thread starter Thread starter IntegrateMe
  • Start date Start date
  • Tags Tags
    Integral
IntegrateMe
Messages
214
Reaction score
1
\int_{1}^{e} \frac{3x^3-1}{x} dx

What method? I haven't seen a problem like this before.
 
Last edited:
Physics news on Phys.org


Remember how (a+b)/c = a/c + b/c ? Use a similar principle.
 


Ah, OK so:

\int_{1}^{e} 3x^2 -\frac{1}{x} dx

In which case this becomes a simple integration problem.

Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top