How to find the rate of decrease of water height in a tank

psymple
Messages
1
Reaction score
0

Homework Statement


Water flows from a tank of constant cross-sectional area 54 ft2 through an orifice of constant cross-sectional area 1.7 ft2 located at the bottom of the tank.
Initially the height of the water in the tank was 20 and its height t sec later is given by the following equation.

How fast was the height of the water decreasing when its height was 9 ft? (Round your answer to two decimal places.)____________1 ft/sec

Homework Equations



2(sqrt H) +1/24t-2(sqrt 20)=0 (0<=t<=50(sqrt 20))

The Attempt at a Solution


First let me say that this is my very first post-so forgive if i did not do everything up to par. TIA for all the help this site will bring.

Im almost clueless. I think I have to write it out;
dH/dt 2H^2 + (1/24t)^2 -2(20)^2=0
then we have to minus the dH/dt chain rule out;
2(1/24t)(1/24) -2(20)^2=(1) dH/dt (4H) = 1/288t=4H dH/dt
then divide out
dH/dt = (1/288)/4h

Am I even close??
thanks again and please advise if i am posting equations wrote!
 
Physics news on Phys.org
psymple said:
Im almost clueless. I think I have to write it out;
dH/dt 2H^2 + (1/24t)^2 -2(20)^2=0
then we have to minus the dH/dt chain rule out;
2(1/24t)(1/24) -2(20)^2=(1) dH/dt (4H) = 1/288t=4H dH/dt
then divide out
dH/dt = (1/288)/4h

Am I even close??
thanks again and please advise if i am posting equations wrote!

I'm not sure what you are doing here;

\frac{d}{dt}\left(2\sqrt{H(t)}+\frac{1}{24}t-2\sqrt{20}\right)=\frac{d}{dt}\left(2\sqrt{H(t)}\right)+\frac{d}{dt}\left(\frac{1}{24}t\right)-\frac{d}{dt}\left(2\sqrt{20}\right)\neq 2H^2\frac{dH}{dt}+\left(\frac{1}{24}t\right)^2-2(20)^2
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top