MHB How to find volume of cone+hemisphere on the cone using spherical coordinate

Click For Summary
The discussion focuses on calculating the volumes of a cone and a hemisphere using spherical coordinates. The volume of the cone is derived as (√3πR³)/3, while the volume of the hemisphere is (2πR³)/3, leading to a total volume of ((2 + √3)πR³)/3. There is confusion regarding the extent of the radius for the hemisphere and how to apply surface equations in volume calculations. The conversation emphasizes that the surface equation does not impact the volume calculation directly.
Another1
Messages
39
Reaction score
0
View attachment 7767

i have a problem about find volume of hemisphere I do not know the true extent of radius r (0 to ?)

i think...
cone ( 0 < r < R cosec(\theta) )
hemisphere (0 < r < R)
 

Attachments

  • ssssss.png
    ssssss.png
    3.4 KB · Views: 158
Physics news on Phys.org
Another said:
i have a problem about find volume of hemisphere I do not know the true extent of radius r (0 to ?)

i think...
cone ( 0 < r < R cosec(\theta) )
hemisphere (0 < r < R)

Hi Another, welcome to MHB! (Wave)

Let's start with the cone.
\begin{tikzpicture}
\def\R{4}
\def\h{\R * cot(30)}
\def\Theta{20}
\coordinate (A) at (0,0);
\coordinate (B) at (0,{\h});
\coordinate (C) at ({\R},{\h});
\coordinate (D) at ({\h*tan(\Theta)},{\h});
\draw (A) -- node[above left] {$h$} (B) -- node[above] {R} (C) -- cycle;
\draw[blue, thick] (A) -- node[above left] {$r_{max}$} (D);
\path (A) node at ({90-\Theta/2}:1.3) {$\theta$};
\draw[thick] (A) +(0,1) arc (90:{90-\Theta}:1);
\end{tikzpicture}

We have $\tan 30^\circ = \frac Rh$ and $\cos\theta = \frac h{r_{max}}$ don't we?
Doesn't that mean:
$$0 < r < r_{max} = R\cot 30^\circ \sec\theta$$As for the hemisphere, suppose we translate it to the origin first before calculating its volume.
Then we just have $0 < r < R$ don't we? (Wondering)
 
Another said:
i have a problem about find volume of hemisphere I do not know the true extent of radius r (0 to ?)

i think...
cone ( 0 < r < R cosec(\theta) )
hemisphere (0 < r < R)

No calculus needed...

If the radius of the cone and hemisphere is R units, then we can see the height of the cone we can evaluate by

$\displaystyle \begin{align*} \tan{ \left( \theta \right) } &= \frac{O}{A} \\ \tan{ \left( 30^{\circ} \right) } &= \frac{R}{h} \\ \frac{1}{\sqrt{3}} &= \frac{R}{h} \\ \frac{h}{\sqrt{3}} &= R \\ h &= \sqrt{3}\,R \end{align*}$

Volume of the cone:

$\displaystyle \begin{align*} V &= \frac{1}{3}\,\pi\,r^2\,h \\ &= \frac{\pi\,R^2 \left( \sqrt{3}\,R \right) }{3} \\ &= \frac{\sqrt{3}\,\pi\,R^3}{3} \end{align*}$

Volume of the hemisphere:

$\displaystyle \begin{align*} V &= \frac{2}{3}\,\pi\,r^3 \\ &= \frac{2\,\pi\,R^3}{3} \end{align*}$

Thus the total volume is

$\displaystyle \begin{align*} V &= \frac{\sqrt{3}\,\pi\,R^3}{3} + \frac{2\,\pi\,R^3}{3} \\ &= \frac{\left( 2 + \sqrt{3} \right) \pi \, R^3}{3}\,\textrm{ units}^3 \end{align*}$
 
Prove It said:
No calculus needed...

If the radius of the cone and hemisphere is R units, then we can see the height of the cone we can evaluate by

$\displaystyle \begin{align*} \tan{ \left( \theta \right) } &= \frac{O}{A} \\ \tan{ \left( 30^{\circ} \right) } &= \frac{R}{h} \\ \frac{1}{\sqrt{3}} &= \frac{R}{h} \\ \frac{h}{\sqrt{3}} &= R \\ h &= \sqrt{3}\,R \end{align*}$

Volume of the cone:

$\displaystyle \begin{align*} V &= \frac{1}{3}\,\pi\,r^2\,h \\ &= \frac{\pi\,R^2 \left( \sqrt{3}\,R \right) }{3} \\ &= \frac{\sqrt{3}\,\pi\,R^3}{3} \end{align*}$

Volume of the hemisphere:

$\displaystyle \begin{align*} V &= \frac{2}{3}\,\pi\,r^3 \\ &= \frac{2\,\pi\,R^3}{3} \end{align*}$

Thus the total volume is

$\displaystyle \begin{align*} V &= \frac{\sqrt{3}\,\pi\,R^3}{3} + \frac{2\,\pi\,R^3}{3} \\ &= \frac{\left( 2 + \sqrt{3} \right) \pi \, R^3}{3}\,\textrm{ units}^3 \end{align*}$
thank

But for this problem, if the surface equation is determined with [cos(theta)]^2 ? How can we find the volume of hemisphere + cone ?.

thankkkkkk
 
Another said:
thank

But for this problem, if the surface equation is determined with [cos(theta)]^2 ? How can we find the volume of hemisphere + cone ?.

thankkkkkk

I have no idea what you mean by the surface equation, and the surface itself (an area) has absolutely nothing to do with the space inside it (the volume)...