PhMichael
- 134
- 0
Homework Statement
\int_{2}^{y(x)}e^{t^2+1}dt + \int_{x^2+3x}^{0}\frac{e^z}{1+z}=0
I need so find y'(0).
The Attempt at a Solution
\frac{d}{dx}\int_{2}^{y(x)}e^{t^2+1}dt =y'(x) \cdot e^{y(x)^2+1}
\frac{d}{dx}\int_{x^2+3x}^{0}\frac{e^z}{1+z}=-\frac{e^{x^2+3x}}{x^2+3x+1}\cdot (2x+3)
adding them and substituting x=0 yields:
y'(0) \cdot e^{y(0)^2+1} -3=0
but how can i find y'(0) from them equation?