How to Find y'(0) from an Integral Equation

PhMichael
Messages
134
Reaction score
0

Homework Statement



\int_{2}^{y(x)}e^{t^2+1}dt + \int_{x^2+3x}^{0}\frac{e^z}{1+z}=0

I need so find y'(0).


The Attempt at a Solution



\frac{d}{dx}\int_{2}^{y(x)}e^{t^2+1}dt =y'(x) \cdot e^{y(x)^2+1}

\frac{d}{dx}\int_{x^2+3x}^{0}\frac{e^z}{1+z}=-\frac{e^{x^2+3x}}{x^2+3x+1}\cdot (2x+3)

adding them and substituting x=0 yields:

y'(0) \cdot e^{y(0)^2+1} -3=0

but how can i find y'(0) from them equation?
 
Physics news on Phys.org
PhMichael said:

Homework Statement



\int_{2}^{y(x)}e^{t^2+1}dt + \int_{x^2+3x}^{0}\frac{e^z}{1+z}=0

I need so find y'(0).

The Attempt at a Solution



\frac{d}{dx}\int_{2}^{y(x)}e^{t^2+1}dt =y'(x) \cdot e^{y(x)^2+1}

\frac{d}{dx}\int_{x^2+3x}^{0}\frac{e^z}{1+z}=-\frac{e^{x^2+3x}}{x^2+3x+1}\cdot (2x+3)

adding them and substituting x=0 yields:

y'(0) \cdot e^{y(0)^2+1} -3=0

but how can i find y'(0) from them equation?
y'(x)= \frac{d}{dx}\int_{2}^{y(x)}e^{t^2+1}dt + \frac{d}{dx}\int_{x^2+3x}^{0}\frac{e^z}{1+z}

Go with solving...

y'(0) = y'(0) \cdot e^{y(0)^2+1} -3

y'(0) =\frac{-3}{1-e^{y(0)^2+1}}

That's it.
 
but I need to find a number, not an expression involving y(0). how can y(0) be found?
 
You don't know y(x), so you can't know y'(0).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top