Petar Mali
- 283
- 0
I have a problem with this equation
\frac{d^2\Omega(\alpha)}{d\alpha^2}+\frac{(1+\Phi)+\Phi e^{-\alpha}}{(1+\Phi)-\Phi e^{-\alpha}}\frac{d\Omega(\alpha)}{d\alpha}-S(S+1)\Omega(\alpha)=0
Boundary conditions are
\Omega(0)=1
[\Pi^S_{p=-S}(p-\frac{d}{d\alpha})]\Omega(\alpha)|_{\alpha=0}=0
How to to transform part before first derivative \frac{(1+\Phi)+\Phi e^{-\alpha}}{(1+\Phi)-\Phi e^{-\alpha}}?
\frac{d^2\Omega(\alpha)}{d\alpha^2}+\frac{(1+\Phi)+\Phi e^{-\alpha}}{(1+\Phi)-\Phi e^{-\alpha}}\frac{d\Omega(\alpha)}{d\alpha}-S(S+1)\Omega(\alpha)=0
Boundary conditions are
\Omega(0)=1
[\Pi^S_{p=-S}(p-\frac{d}{d\alpha})]\Omega(\alpha)|_{\alpha=0}=0
How to to transform part before first derivative \frac{(1+\Phi)+\Phi e^{-\alpha}}{(1+\Phi)-\Phi e^{-\alpha}}?