I How to introduce quadratic residues?

matqkks
Messages
280
Reaction score
5
What is the most motivating way to introduce quadratic residues? I would like some concrete examples which have an impact. This is for first year undergraduates doing an elementary number theory course. They have done Diophantine equations, solved linear congruences, primitive roots.
 
Mathematics news on Phys.org
Quadratic residues are used in the factorization of large numbers, so they have applications in cryptography ( pseudo random number generators, in encryption algorithms (for example https://en.wikipedia.org/wiki/Goldwasser–Micali_cryptosystem), ...)
In mathematics they are used for the computation of Legendre symbols and for the proof when a number is expressible as sum of two squares ...
Ssnow
 
matqkks said:
They have done Diophantine equations, solved linear congruences

If the class has studied linear congruences then purely mathematical curiosity leads to asking about polynomial congruences. The simplest example would be ##x^2 = A (mod\ M)## I haven't studied this topic. A blog by John Cook https://www.johndcook.com/blog/quadratic_congruences/ deals with it.

I wonder if any application of quadratic residues to a practical topic comes by way of needing to solve ##x^2 = A (mod \ M)##.

primitive roots.

The solutions to the quadratic equation ##x^2 = -1## play a crucial role in the theory of solving general polynomial equations over the real numbers. I wonder if the solutions to ##x^2 = A (mod\ N)## play a crucial role in the theory of solving general polynomial equations over the integers in mod N arithmetic. Can anybody comment on that?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top