A How to know the number of Feynman diagrams for a given order?

Click For Summary
To calculate the number of Feynman diagrams for a given order, the discussion focuses on the two-point Green's function for fermions in a two-particle interaction. For first-order calculations, there are 6 possible contractions, leading to 4 diagrams after accounting for unconnected diagrams and double counting, resulting in 2 connected diagrams. For second-order calculations, the initial count suggests 80 diagrams, but after removing disconnected configurations and double counting, it appears there should be 20 connected diagrams. However, upon verification with existing literature, only 10 distinct connected diagrams are identified. The discussion seeks clarification on the counting method for Feynman diagrams at various orders.
pines-demon
Gold Member
2024 Award
Messages
979
Reaction score
823
Let's say we want to calculate the two-point Green's function for a fermion to a given order for a two particle interaction of the form ##U(x,y)=U(y,x)##. For the first order calculation we have to do all contractions related to
$$\mathcal{T}[\psi^\dagger_\mu(x_1)\psi^\dagger_\lambda(x_1')\psi_{\lambda'}(x_1')\psi_{\mu'}(x_1)\psi_\alpha(x)\psi^\dagger_\beta(y) ]$$
we have three daggered operators and three-undaggered, so we have 3!=6 possible contractions However there are 2! possible unconnected diagrams. That leaves us with 4 diagrams, but they are repeated, so we have to divide by two to avoid double counting. That means that there are only connected 2 diagrams for order 1.

What about order 2? I was proceeding the same way, we have 5! possible diagrams, when the two interactions are not connected then we have to remove 4!. Also when a single interaction is disconnected, we have 4 possible configurations (per first order), multiplied by 2 to account for the two possible disconnected diagrams. That leaves 80 diagrams, however if we account for double counting twice (there are two interactions), we have 20 connected diagrams.

However when drawing them altogether (and confirming with Fetter&Walecka) there are just 10 distinct connected diagrams. So where did I go wrong here? In general, is there an easy way to count them all for a given order?
 
Last edited:
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...

Similar threads