How to Prove Sum of Binomials Equals 3^n

  • Thread starter Thread starter steven2006
  • Start date Start date
steven2006
Messages
3
Reaction score
0
Prove that
\sum_{k=0}^n \binom nk 2^k = 3^n, \quad n \in \mathbb{Z}^{+}

Can anyone help me? Thanks
 
Physics news on Phys.org
Do you know the binomial theorem? This is a "yes" or "no, but I looked it up in google and now I do" question.
 
StatusX, thanks.
Sorry for the stupid question! Now i work it out.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top