How to Prove the Inequality e^x > (1 +f(x)/n)^n for x in (0, infinity)?

  • Thread starter Thread starter regularngon
  • Start date Start date
  • Tags Tags
    Inequality
regularngon
Messages
19
Reaction score
0

Homework Statement


If 0 <= f(x) < infinity, then I need to show that e^x > (1 +f(x)/n)^n for x in (0, infinity)


Homework Equations





The Attempt at a Solution


I'm pretty sure the answer lies in the comparison of the series representation for e^x and writing (1 +f(x)/n)^n out with the binomial theorem. I did so, however I still don't see it.
 
Physics news on Phys.org
Is this supposed to be true for all n, or the limit as approaches infinity or what? Suppose f(0)=1 then the statement is false for n=1, and x=0.
 
for all n, and x > 0 though.
 
regularngon said:
for all n, and x > 0 though.

Again take n=1, and any function f(x) such that f(1)=2, and it is false.
 
Yea it must be a typo on my teachers part. I'm going to guess he meant e^f(x).
 
Well in that case writing out the series expansions for both sides of the equation would help.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top