magnifik
- 350
- 0
show that L{f(t/b)} = bF(bs), b is not equal to 0
i know that
L{f(t)} = \inte-stf(t) dt = F(s)
so
L{f(t/b)} = \inte-stf(t/b) dt
any tips on how to start? thx
i know that
L{f(t)} = \inte-stf(t) dt = F(s)
so
L{f(t/b)} = \inte-stf(t/b) dt
any tips on how to start? thx