Black Integra
- 56
- 0
Please, anyone tell me how to proof this equation:
{R^\rho}_{\sigma\mu\nu} = \partial_\mu\Gamma^\rho_{\nu\sigma}<br /> - \partial_\nu\Gamma^\rho_{\mu\sigma}<br /> + \Gamma^\rho_{\mu\lambda}\Gamma^\lambda_{\nu\sigma}<br /> - \Gamma^\rho_{\nu\lambda}\Gamma^\lambda_{\mu\sigma}
Given a definition of parallel transport here :
dV^{m}=-\Gamma^{m}_{np}V^{n}dx^{p}
{R^\rho}_{\sigma\mu\nu} = \partial_\mu\Gamma^\rho_{\nu\sigma}<br /> - \partial_\nu\Gamma^\rho_{\mu\sigma}<br /> + \Gamma^\rho_{\mu\lambda}\Gamma^\lambda_{\nu\sigma}<br /> - \Gamma^\rho_{\nu\lambda}\Gamma^\lambda_{\mu\sigma}
Given a definition of parallel transport here :
dV^{m}=-\Gamma^{m}_{np}V^{n}dx^{p}