MHB How to Prove this Interesting Integral Equation?

Click For Summary
The integral equation $$\int^1_0 \frac{dx}{\sqrt[3]{x^2-x^3}} = \frac{2\pi }{\sqrt{3}}$$ can be proven using the Beta function and contour integration methods. A substitution transforms the integral into a form suitable for contour integration, specifically $$t = \frac{1}{x}-1$$ leading to $$\int^{\infty}_0 \frac{dt}{ \sqrt[3]{t}(t+1)}.$$ The residue at the pole -1 is calculated, and through careful integration along specified contours, it is shown that the principal value of the integral converges to $$\frac{2\pi }{\sqrt{3}}.$$ Thus, the integral is successfully proven.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove that

$$\int^1_0 \frac{dx}{\sqrt[3]{x^2-x^3}} = \frac{2\pi }{\sqrt{3}}$$
 
Mathematics news on Phys.org
Hint: Use the Beta function and the complement formula

$$\int_0^1\frac{dx}{\sqrt[3]{x^2-x^3}}=\int_0^1x^{-2/3}(1-x)^{-1/3}dx=B\left(\frac{1}{3},\frac{2}{3}\right)= \frac{\Gamma\left( \frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)}{\Gamma\left(\frac{1}{3}+\frac{2}{3}\right)}=\frac{\pi\;/\sin (\pi/3)}{1}=\frac{2\pi}{\sqrt{3}}$$
 
Yep , still there is another way . Possibly more complicated .
 
It can be solved using contour integration . The approach is quite long I might post it later .

On the other hand we can transform to another contour integration using a substitution .

$$t = \frac{1}{x}-1 \,\,\, dt = - \frac{1}{x^2}dx$$

$$\int^{\infty}_0 \frac{dt}{ \sqrt[3]{t}(t+1)}$$

we can use the following function to integrate

$$f(z) = \frac{e^{\frac{-1}{3}\text{Log}_0(z)}}{z+1}$$

Notice we are choosing a branch cut along the positive x-axis .

We will use a key-hole contour as indicated in the picture .

View attachment 909

$$\oint_{\Gamma_2} f(z) \, dz +\oint_{\Gamma_4} f(z) \, dz+ \int_{\Gamma_3} f(z) \, dz + \int_{\Gamma_1} f(z) \, dz = 2\pi i \text{Res}(f(z) ; -1) $$

Integration along the big circle :

$$\oint_{\Gamma_2}\frac{e^{\frac{-1}{3}\text{Log}_0(z)}}{z+1}\, dz $$

We will use the following paramaterization $$z = Re^{it}\,\,\, 0< t < 2\pi $$

$$iR\int_{0}^{2\pi }\frac{e^{it}\, e^{\frac{-1}{3}\text{Log}_{0}(Re^{it})}}{Re^{it}+1}\, dt \leq 2 \pi \frac{R^{1-\frac{1}{3}}}{R-1} $$

Now take $R$ to be arbitrarily large

$$\lim_{R \to \infty}2 \pi \frac{R^{\frac{2}{3}}}{R-1} = 0 $$

Similarity the integration along the smaller circle goes to $0$ as $$r \to 0$$ .

Integration along the x-axis :

$$\text{P.V} \int^{\infty}_{0} \frac{e^{\frac{-1}{3}\text{Log}_0(z)}}{z+1}\, dz $$

Along the positive x-axis we get the following

$$\text{P.V} \int^{\infty}_{0} \frac{e^{\frac{-1}{3}\ln(x)}}{x+1}\, dx$$

For the other integral on the opposite direction

$$\text{P.V} \int^{0}_{\infty} \frac{e^{\frac{-1}{3}(\ln(x)+2\pi i)}}{x+1}\, dx$$

The residue at $$-1$$

Since we have a simple pole

$$\text{Res}(f;-1)= e^{-\frac{1}{3}\text{Log}_0(-1)} = e^{-\frac{\pi}{3} i} $$

Final step

$$\text{P.V}(1-e^{-\frac{2\pi}{3} i } )\int^{\infty}_{0} \frac{1}{\sqrt[3]{x}(x+1)}\, dx = 2\pi i e^{-\frac{\pi}{3} i} $$

$$\text{P.V}\int^{\infty}_{0} \frac{1}{\sqrt[3]{x}(x+1)}\, dx = 2\pi i \frac{e^{-\frac{\pi}{3} i}}{1-e^{-\frac{2\pi}{3} i } } $$

We can easily prove that $$2\pi i \frac{e^{-\frac{\pi}{3} i}}{1-e^{-\frac{2\pi}{3} i } }=\frac{\pi }{\sin \left( \frac{\pi}{3}\right)}=\frac{2\pi }{\sqrt{3}}$$

Hence the result

$$\text{P.V}\int^{\infty}_{0} \frac{1}{\sqrt[3]{x}(x+1)}\, dx = \frac{2\pi }{\sqrt{3}} $$

We can easily prove that the integral converges hence the principle value is equal to the integral $$\square$$ .
 

Attachments

  • key hole.jpg
    key hole.jpg
    5.6 KB · Views: 97
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
971
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 105 ·
4
Replies
105
Views
6K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K