How to Prove this Interesting Integral Equation?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Integral Interesting
Click For Summary
SUMMARY

The integral equation $$\int^1_0 \frac{dx}{\sqrt[3]{x^2-x^3}} = \frac{2\pi }{\sqrt{3}}$$ is proven using contour integration and the Beta function. The discussion details a transformation involving the substitution $$t = \frac{1}{x}-1$$ and the function $$f(z) = \frac{e^{\frac{-1}{3}\text{Log}_0(z)}}{z+1}$$ with a key-hole contour approach. The residue at the simple pole $$-1$$ is calculated, leading to the conclusion that the principal value of the integral converges to the stated result.

PREREQUISITES
  • Understanding of contour integration techniques
  • Familiarity with the Beta function and its properties
  • Knowledge of complex analysis, specifically residue theory
  • Proficiency in evaluating principal value integrals
NEXT STEPS
  • Study the properties of the Beta function and its applications in integral calculus
  • Learn advanced contour integration techniques, including key-hole contours
  • Explore residue theory in complex analysis for evaluating integrals
  • Investigate the relationship between principal value integrals and convergence
USEFUL FOR

Mathematicians, physicists, and students of advanced calculus or complex analysis seeking to deepen their understanding of integral equations and contour integration methods.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove that

$$\int^1_0 \frac{dx}{\sqrt[3]{x^2-x^3}} = \frac{2\pi }{\sqrt{3}}$$
 
Physics news on Phys.org
Hint: Use the Beta function and the complement formula

$$\int_0^1\frac{dx}{\sqrt[3]{x^2-x^3}}=\int_0^1x^{-2/3}(1-x)^{-1/3}dx=B\left(\frac{1}{3},\frac{2}{3}\right)= \frac{\Gamma\left( \frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)}{\Gamma\left(\frac{1}{3}+\frac{2}{3}\right)}=\frac{\pi\;/\sin (\pi/3)}{1}=\frac{2\pi}{\sqrt{3}}$$
 
Yep , still there is another way . Possibly more complicated .
 
It can be solved using contour integration . The approach is quite long I might post it later .

On the other hand we can transform to another contour integration using a substitution .

$$t = \frac{1}{x}-1 \,\,\, dt = - \frac{1}{x^2}dx$$

$$\int^{\infty}_0 \frac{dt}{ \sqrt[3]{t}(t+1)}$$

we can use the following function to integrate

$$f(z) = \frac{e^{\frac{-1}{3}\text{Log}_0(z)}}{z+1}$$

Notice we are choosing a branch cut along the positive x-axis .

We will use a key-hole contour as indicated in the picture .

View attachment 909

$$\oint_{\Gamma_2} f(z) \, dz +\oint_{\Gamma_4} f(z) \, dz+ \int_{\Gamma_3} f(z) \, dz + \int_{\Gamma_1} f(z) \, dz = 2\pi i \text{Res}(f(z) ; -1) $$

Integration along the big circle :

$$\oint_{\Gamma_2}\frac{e^{\frac{-1}{3}\text{Log}_0(z)}}{z+1}\, dz $$

We will use the following paramaterization $$z = Re^{it}\,\,\, 0< t < 2\pi $$

$$iR\int_{0}^{2\pi }\frac{e^{it}\, e^{\frac{-1}{3}\text{Log}_{0}(Re^{it})}}{Re^{it}+1}\, dt \leq 2 \pi \frac{R^{1-\frac{1}{3}}}{R-1} $$

Now take $R$ to be arbitrarily large

$$\lim_{R \to \infty}2 \pi \frac{R^{\frac{2}{3}}}{R-1} = 0 $$

Similarity the integration along the smaller circle goes to $0$ as $$r \to 0$$ .

Integration along the x-axis :

$$\text{P.V} \int^{\infty}_{0} \frac{e^{\frac{-1}{3}\text{Log}_0(z)}}{z+1}\, dz $$

Along the positive x-axis we get the following

$$\text{P.V} \int^{\infty}_{0} \frac{e^{\frac{-1}{3}\ln(x)}}{x+1}\, dx$$

For the other integral on the opposite direction

$$\text{P.V} \int^{0}_{\infty} \frac{e^{\frac{-1}{3}(\ln(x)+2\pi i)}}{x+1}\, dx$$

The residue at $$-1$$

Since we have a simple pole

$$\text{Res}(f;-1)= e^{-\frac{1}{3}\text{Log}_0(-1)} = e^{-\frac{\pi}{3} i} $$

Final step

$$\text{P.V}(1-e^{-\frac{2\pi}{3} i } )\int^{\infty}_{0} \frac{1}{\sqrt[3]{x}(x+1)}\, dx = 2\pi i e^{-\frac{\pi}{3} i} $$

$$\text{P.V}\int^{\infty}_{0} \frac{1}{\sqrt[3]{x}(x+1)}\, dx = 2\pi i \frac{e^{-\frac{\pi}{3} i}}{1-e^{-\frac{2\pi}{3} i } } $$

We can easily prove that $$2\pi i \frac{e^{-\frac{\pi}{3} i}}{1-e^{-\frac{2\pi}{3} i } }=\frac{\pi }{\sin \left( \frac{\pi}{3}\right)}=\frac{2\pi }{\sqrt{3}}$$

Hence the result

$$\text{P.V}\int^{\infty}_{0} \frac{1}{\sqrt[3]{x}(x+1)}\, dx = \frac{2\pi }{\sqrt{3}} $$

We can easily prove that the integral converges hence the principle value is equal to the integral $$\square$$ .
 

Attachments

  • key hole.jpg
    key hole.jpg
    5.6 KB · Views: 98

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K