v_pino
- 156
- 0
Homework Statement
Given (\psi_1, \psi_2)=\int dx \psi_1^*(x) \psi_2(x), show (\psi_1, \psi_2)=\int dk \phi_1^*(k) \phi_2(k), where \phi_{1,2}(k)= \int dx \psi_k^*(x) \psi_{1,2}(x) and psi_k(x)=\frac{1}{\sqrt{2 \pi}} e^{ikx}.
Homework Equations
\psi (x)= \int dk \phi(k) \psi_k(x)
\psi(x)=\int dk \phi(k) \psi_k(x)
The Attempt at a Solution
(\psi_1 , \psi_2)= \int dx \left \{ \int dk \phi_1^*(k) \psi_k^*(x) \right \}\left \{ \int dk \phi_2(k) \psi_k(x) \right \}
=\int dx \left \{ \int dk \phi_1^*(k) \frac{1}{\sqrt {2 \pi}}e^{-ikx} \int dk \phi_2(k) \frac{1}{\sqrt {2 \pi}}e^{ikx} \right \}
= \frac{1}{2 \pi}\int dx \left \{ \int dk \phi_1^*(k) \int dk \phi_2(k) \right \}
Is this correct so far? How do I proceed from here? It looks like a Fourier Transform with the 1/2pi. And I have two integrals within another one for the dx. Can I separate them some how?