How to Simplify Nonlinear First-Order ODEs in Physics Problems?

  • Thread starter Thread starter WendysRules
  • Start date Start date
  • Tags Tags
    Nonlinear Ode
WendysRules
Messages
35
Reaction score
3

Homework Statement


Let $$\frac{1}{2}\dot{r}^2=e+\frac{m}{r}-\frac{L^2}{2r^2}$$ where L is angular moment, and e is energy (so I guess I'll take as constants for now...)

Homework Equations


Not sure for now.

The Attempt at a Solution


So, if I let $$u=\frac{1}{r}$$ then my equation becomes $$\frac{1}{2}\dot{r}^2=e+mu-\frac{L^2u^2}{2}$$ However, I'm not sure if I should also get my differential in terms of u as well. IE $$r=\frac{1}{u} \rightarrow dr=-\frac{1}{u^2} du$$ or just continue down the first path.

If I don't do the differential change, then I'd get $$\frac{1}{2}\dot{r}^2=e+mu-\frac{L^2u^2}{2} \rightarrow \dot{r}^2 = 2e+2mu-\frac{2L^2u^2}{2}$$ finally giving us... $$ \dot{r} =\sqrt{2e+2mu-L^2u^2}$$ which is just... yuck.

If I do the substitution, i'll get... $$\frac{1}{2}\dot{r}^2=(\frac{dr}{2dt})^2 \rightarrow (\frac{-\frac{1}{u^2} du}{2dt})^2 \rightarrow (\frac{-du}{2u^2dt})^2 $$ From here, we set it equal to the righthand side, and then see that $$\frac{-du}{2u^2dt} = \sqrt{e+mu-\frac{L^2u^2}{2}} \rightarrow \frac{du}{u^2} =-2\sqrt{e+mu-\frac{L^2u^2}{2}} dt$$ which is also, bad looking. So before I go ahead and solve either, I was looking to maybe see if there is an easier way to look at these since the next one is even *worse* (cubic in r..)

Could it also be that I'm not seeing the simplicity of it all? I'm not sure if r *depends* on t really, since this comes from our metric that ##ds^2=dr^2+r^2d\phi^2##(working in equatorial plane thus, ##\sin\theta = 1## and ##d\theta = 0##) Can go more into this if needed. So, it could be that the right hand side on both is simple because none of the terms depend on t.
 
Physics news on Phys.org
The equation you started with is conservation of energy for an object in a gravitational potential, so you should expect ##r## and ##\phi## to vary with time in general. What's your end goal for this problem? Finding ##r(t)## and ##\phi(t)##, or finding ##r(\phi)##? If it's the latter, you can use the fact that angular momentum is conserved to relate ##\dot r## with ##dr/d\phi##.
 
vela said:
The equation you started with is conservation of energy for an object in a gravitational potential, so you should expect ##r## and ##\phi## to vary with time in general. What's your end goal for this problem? Finding ##r(t)## and ##\phi(t)##, or finding ##r(\phi)##? If it's the latter, you can use the fact that angular momentum is conserved to relate ##\dot r## with ##dr/d\phi##.

The end goal is something I already know, but I've never explicitly shown it. Essentially, I want to find r(t), and then compare it to the relativistic case where $$\frac{1}{2}\dot{r}^2= e+\frac{m}{r}-\frac{L^2}{2r^2}+\frac{L^2m}{r^3}$$ and then compare orbits. I know I can compare these with the potentials (since in both cases we have ##\frac{1}{2}\dot{r}^2= const-potential## if we factor out a - from both V), but I should also explicitly solve for r(t) in both cases as I've never done it. And after seeing the integrals being done, I realize why I have just accepted the hand-wavy case!

If I've set everything up right, then I guess I should just chug through the integral.
 
WendysRules said:

Homework Statement


Let $$\frac{1}{2}\dot{r}^2=e+\frac{m}{r}-\frac{L^2}{2r^2}$$ where L is angular moment, and e is energy (so I guess I'll take as constants for now...)

Homework Equations


Not sure for now.

The Attempt at a Solution


So, if I let $$u=\frac{1}{r}$$ then my equation becomes $$\frac{1}{2}\dot{r}^2=e+mu-\frac{L^2u^2}{2}$$ However, I'm not sure if I should also get my differential in terms of u as well. IE $$r=\frac{1}{u} \rightarrow dr=-\frac{1}{u^2} du$$ or just continue down the first path.

If I don't do the differential change, then I'd get $$\frac{1}{2}\dot{r}^2=e+mu-\frac{L^2u^2}{2} \rightarrow \dot{r}^2 = 2e+2mu-\frac{2L^2u^2}{2}$$ finally giving us... $$ \dot{r} =\sqrt{2e+2mu-L^2u^2}$$ which is just... yuck.

If I do the substitution, i'll get... $$\frac{1}{2}\dot{r}^2=(\frac{dr}{2dt})^2 \rightarrow (\frac{-\frac{1}{u^2} du}{2dt})^2 \rightarrow (\frac{-du}{2u^2dt})^2 $$ From here, we set it equal to the righthand side, and then see that $$\frac{-du}{2u^2dt} = \sqrt{e+mu-\frac{L^2u^2}{2}} \rightarrow \frac{du}{u^2} =-2\sqrt{e+mu-\frac{L^2u^2}{2}} dt$$ which is also, bad looking. So before I go ahead and solve either, I was looking to maybe see if there is an easier way to look at these since the next one is even *worse* (cubic in r..)

Could it also be that I'm not seeing the simplicity of it all? I'm not sure if r *depends* on t really, since this comes from our metric that ##ds^2=dr^2+r^2d\phi^2##(working in equatorial plane thus, ##\sin\theta = 1## and ##d\theta = 0##) Can go more into this if needed. So, it could be that the right hand side on both is simple because none of the terms depend on t.

You need to be careful: passing from a formula for ##(dr/dt)^2## to a formula for ##dr/dt## requires you to choose the correct root. In your ##r(t)## DE you need to use ##+\sqrt{\cdot}## when ##r(t)## is increasing and ##-\sqrt{\cdot}## when ##r(t)## is decreasing. So, you have one DE when ##r## is moving away from ##0## and another when it is moving towards ##0##. An opposite choice must be made in your ##u(t)## DE.

The need for such choices can create headaches when it comes to solving the DE numerically, using a standard DE-solving package.
 
  • Like
Likes WendysRules
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top