How to Simplify This Trigonometric Equation Using Substitutions?

AI Thread Summary
The discussion focuses on simplifying a trigonometric equation using substitutions. The equation presented involves terms like sin and cos functions, ultimately equating to tan(α/2). Participants suggest substituting specific values, such as α = 60°, to verify the equation's correctness. There is also a request for guidance on using substitutions, specifically with s = sin(α) and c = cos(α), and a prompt to recall formulas for cos(2α) in terms of cos(α). The conversation emphasizes the need for clarity in problem statements and the application of trigonometric identities.
Fred1230
Messages
2
Reaction score
1
Returning if I have to show the effort, I came to this:
\frac{\sin4\alpha}{1+\cos4\alpha}\cdot\frac{\cos2\alpha}{1+\cos2\alpha}\cdot\frac{\cos\alpha}{1+\cos\alpha}=\tan\frac{\alpha}{2}.
=
\frac{\sin4\alpha}{\sin^2\alpha+cos^2\alpha+\cos4\alpha}\cdot\frac{(\sin^2\alpha+cos^2\alpha)-2sin^2\alpha}{\sin^2\alpha+cos^2\alpha+\cos2\alpha}\cdot\frac{\cos\alpha}{\sin^2\alpha+cos^2\alpha+\cos\alpha}=\frac{\sin\alpha^2}{\cos2\alpha}.
I don't know how to use substitutions
 
Physics news on Phys.org
s=\sin\alpha and c=\cos\alpha
 
Fred1230 said:
Returning if I have to show the effort, I came to this:
\frac{\sin4\alpha}{1+\cos4\alpha}\cdot\frac{\cos2\alpha}{1+\cos2\alpha}\cdot\frac{\cos\alpha}{1+\cos\alpha}=\tan\frac{\alpha}{2}.
=
\frac{\sin4\alpha}{\sin^2\alpha+cos^2\alpha+\cos4\alpha}\cdot\frac{(\sin^2\alpha+cos^2\alpha)-2sin^2\alpha}{\sin^2\alpha+cos^2\alpha+\cos2\alpha}\cdot\frac{\cos\alpha}{\sin^2\alpha+cos^2\alpha+\cos\alpha}=\frac{\sin\alpha^2}{\cos2\alpha}.
I don't know how to use substitutions
Substitute ##\alpha=60^{\circ}## in your expression and check if you come out with ##\tan30^{\circ}##. If not it's back to the drawing board!
 
Fred1230 said:
Returning if I have to show the effort, I came to this:
\frac{\sin4\alpha}{1+\cos4\alpha}\cdot\frac{\cos2\alpha}{1+\cos2\alpha}\cdot\frac{\cos\alpha}{1+\cos\alpha}=\tan\frac{\alpha}{2}.
=
\frac{\sin4\alpha}{\sin^2\alpha+cos^2\alpha+\cos4\alpha}\cdot\frac{(\sin^2\alpha+cos^2\alpha)-2sin^2\alpha}{\sin^2\alpha+cos^2\alpha+\cos2\alpha}\cdot\frac{\cos\alpha}{\sin^2\alpha+cos^2\alpha+\cos\alpha}=\frac{\sin\alpha^2}{\cos2\alpha}.
I don't know how to use substitutions
Do you know a formula for ##\cos(2\alpha)## in terms of ##\cos(\alpha)##?
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top