How to Solve an ODE with Constant Non-Homogeneous Term and Boundary Conditions?

  • Thread starter Thread starter rugabug
  • Start date Start date
  • Tags Tags
    Ode
rugabug
Messages
10
Reaction score
0
9qjj1j.jpg

I can't seem to find anywhere how to find the exact solution to the equation when the non-homogeneous part is just 1 and not a function. I would very much appreciate it if anyone could give me some assistance. Also for the bounday counditions doesn't one of them need to be phi prime?
Thanks.
 
Physics news on Phys.org
y''+y=1
or
y''+y-1=0
y(0)=y(1)=0

differentiate
(y''+y-1)'=0
y'''+y'=0
D(D^2+1)y=0
substitute your solution into
y''+y=1

otherwise change variable y=u+1

and 1 is a function f(x)=1 so you could just solve
y''+y=f(x)
 
If you're given phi and the derivative of phi at 0, that's called initial conditions, since it describes the position and velocity of your particle (historically you're interested in this for physics reasons). If you're given phi at two points, that's called boundary conditions because you know the position at the beginning and at the end.

Either way you get two equation with which to solve your unknowns, so either way is fine (although for certain cases boundary conditions are a little bit weaker, but that shouldn't be a problem here)
 
There is a crucial difference between "initial value" problems and "boundary value" problems. The existence and uniqueness of a solution to an initial value problem depends entirely upon the equation, not the initial conditions but the existence and uniqueness of a solution to a boundary value problem may depend upon the boundary conditions as well.

For example, y"+ y= 0 y(0)= A, y'(0)= B has a unique solution for all A and B. But y"+ y= 0, y(0)= 0, y(\pi)= 1 has no solution while y"+ y= 0, y(0)= 0, y(\pi)= 0 has an infinite number of solutions.

rugabug, the simplest way to solve your problem is to first find the solution to the associated homogeneous equation (I imagine you have already done that), then "try" an undetermined constant, A as a specific solution to the entire equation: If y= A, y'= 0 and y"= 0 so the equation becomes A= 1. Just add 1 to your general solution to the homogeneous equation.
 
Thank you so very much for the help.
I first found the complementary solution then add it to the particular solution and I am now solving for the constants.
It's all starting to come back to me. It's been a handful of years since I took diff eq.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top