How to Solve for Integers Modulo n?

  • Thread starter Thread starter JJKorman1
  • Start date Start date
  • Tags Tags
    Integers
JJKorman1
Messages
4
Reaction score
0
I understand how to solve: a=12mod7 => a = 5, I think, however,
how do you solve for a=7mod12 ?
Stumped :eek:
 
Physics news on Phys.org
When you say solve, is what you mean is given an integer p find an integer q with 0<=q<n and p==q mod(n) as 7 is between 0 and 11 it solves itself, if you will.
 
Do not understand your response:

if a=12mod7 yields a=5: 5 is the remainder however,
if a=7mod12 what is a? & how do I get there?

Thanks,

JimK
 
How ling did you spend trying to understand the answer I gave? a=7 is, shall we say, in the reduced form. The remainder after dividing 7 by 12 is 7.

As it stands, when you say solve a=p mod(n) you are not using a well defined phrase. What you might ought to mean is find the remainder on division by n of p, but that isn't immediately obvious from what you wrote. That is, and I realize I'm just restating what I orginally wrote, find the a with 0<=a<n that is the remainder on dividing by n of p. If a is already in that range you are done.

Remember these aren't equals signs, they are equivalences.
 
12 mod 7 == 5 bacause 5 is the difference when you find the largest multiple of 7 that is less than 12 (i.e., 7 itself).

To find what 7 mod 12 is, note that 0 is a multiple of any number. So, now, 0 is the largest multiple of 12 that lies just below 7, and the remainder is 7 itself.

This should be obvious from the reasoning that you are asking what hour 7 refers to on a 12 hr clock.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top