Well, I am not sure I would call it "very close. However, Crossfit415, you can use that to get a better solution: if x= 0, x^3-5x+3.8= 3.8 and if x= 1, itex]x^3-5x+3.8= -.2[/itex]. one valule is positive and the other negative so the function must be 0 between them- that means there must be a root between 0 and 1. .5 is halfway between and (.5)^3- 5(.5)+ 3.8= 1.425. That is positive so there must be a root half way between .5 and 1. Halfway between those is .75. (.75)^3- 5(.75)+ 3.8= 0.471875. Again, that is positive so there must be a root between .75 and 1. Halfway between those is 0.875, etc. Carry that out to whatever accuracy you want and, as stallionx says, divide the polynomial by x- a to get a quadratic equation for the other two roots.<br />
<br />
You might suspect, right from the start, that since -.2 is much closer to 0 than 3.8, the root should be closer to 1 than to 0. That's correct and a little faster numerical method would be the "method of secants". Instead of picking exactly half way between possible x values, we calculate the equation of the line between the given points. The line between (0, 3.8) and (1, -.2) is y= -4x+ 3.8. That will be 0 when x= 3.8/4= 0.95. Faster "convergence" to the correct solution but more calculation required at each step.<br />
<br />
"Newton's method", replacing the curve by a tangent line at each step, would be even faster but requires Calculus.