How to Solve Hydraulic Jump Problems with Conservation of Momentum and Mass?

Click For Summary
SUMMARY

This discussion focuses on solving hydraulic jump problems using the principles of conservation of momentum and mass. The key equations include the continuity equation, represented as h1V1 = h2V2, and the momentum balance equation, which incorporates hydrostatic pressure and viscous dissipation. Participants clarify that viscous dissipation does not affect the momentum balance in a steady-state system, and they discuss the implications of including horizontal streambed stress, which would require solving the Navier-Stokes equations using computational fluid dynamics (CFD) tools.

PREREQUISITES
  • Understanding of conservation laws in fluid mechanics
  • Familiarity with hydrostatic pressure calculations
  • Knowledge of Navier-Stokes equations
  • Experience with computational fluid dynamics (CFD) tools
NEXT STEPS
  • Study the derivation and application of the Navier-Stokes equations
  • Learn about computational fluid dynamics (CFD) software for fluid flow analysis
  • Explore hydraulic jump phenomena in fluid mechanics textbooks
  • Review Massey’s "Mechanics of Fluids" for in-depth coverage of hydraulic jumps
USEFUL FOR

Fluid mechanics students, hydraulic engineers, and researchers focusing on fluid dynamics and hydraulic systems will benefit from this discussion.

member 428835

Homework Statement


The question is stated here, though I'm happy to repost but they include a picture. I should say this is not homework, I'm doing problems for practice.
http://web.mit.edu/2.25/www/5_pdf/5_04.pdf

Homework Equations


Conservation of momentum/mass

The Attempt at a Solution


Conservation of mass between stations 1 and 2 is ##h_1V_1=h_2V_2##. I'm unsure how to approach momentum since I would typically make my CV the fluid between stations 1 and 2, but there is viscous dissipation in the jump, as illustrated. Any ideas?
 
Physics news on Phys.org
joshmccraney said:

Homework Statement


The question is stated here, though I'm happy to repost but they include a picture. I should say this is not homework, I'm doing problems for practice.
http://web.mit.edu/2.25/www/5_pdf/5_04.pdf

Homework Equations


Conservation of momentum/mass

The Attempt at a Solution


Conservation of mass between stations 1 and 2 is ##h_1V_1=h_2V_2##. I'm unsure how to approach momentum since I would typically make my CV the fluid between stations 1 and 2, but there is viscous dissipation in the jump, as illustrated. Any ideas?
Viscous dissipation involves internal forces, so no net affect on momentum.
You are told to ignore horizontal stress from streambed, so no affect from that either.
 
  • Like
Likes   Reactions: Nidum and Chestermiller
Thanks! Then the momentum equation on the CV of fluid from station 1 to station 2 (assuming the hydraulic jump is stationary) is $$\partial_t \iiint \rho \vec{V} \, dV + \iint_{\partial V} \rho \vec{V} (\vec{V_{rel}}\cdot \hat{n})\, dS = \sum F\implies\\
\iint_{\partial V} \rho \vec{V} (\vec{V_{rel}}\cdot \hat{n})\, dS = -\iint_{\partial V} P \hat{n}\, dS\implies\\
\int_0^b \int_0^{h_1} \rho V_1 \hat{i} (V_1 \hat{i} \cdot(-\hat{i}))\, dz\,dy+\int_0^b \int_0^{h_2} \rho V_2 \hat{i} (V_2 \hat{i} \cdot(\hat{i}))\, dz\,dy = -\int_0^b \int_0^{h_1}P_1 (-\hat{i}) \, dz\,dy -\int_0^b \int_0^{h_2}P_2 \hat{i} \, dz\,dy\implies\\
\rho (V_2^2 h_2-V_1^2 h_1) = P_1h_1-P_2h_2$$ Hydrostatic pressure is ##P=\rho g z##, so assuming this holds then average pressure along ##A_1## is $$P_1 = \frac{1}{b h_1}\int_0^b \int_0^{h_1} \rho g z \, dz \, dy = \frac{\rho g h_1}{2}$$ where I assume atmospheric pressure is 0. Then the final result for the momentum balance is
$$V_2^2 h_2-V_1^2 h_1 = \frac{g h_1^2}{2}-\frac{g h_2^2}{2}$$ This along with continuity gives us the solution in terms of asked quantities. Is this correct?
haruspex said:
Viscous dissipation involves internal forces, so no net affect on momentum.
So viscous dissipation does not change the time derivative of momentum? Could you briefly explain why?

haruspex said:
You are told to ignore horizontal stress from streambed, so no affect from that either.
So how would this balance change if we were not to ignore the horizontal streambed stress? I think the additional force would be $$-\iint_{\partial V} \mu \vec{V} \otimes \vec{V} \cdot \hat{n} \, dS$$ Would we have to take this to Navier Stokes?
 
Solutions for this problem and the previous nozzle problem can be easily found in undergraduate fluid mechanics textbooks and also online .
 
Nidum said:
Solutions for this problem and the previous nozzle problem can be easily found in undergraduate fluid mechanics textbooks and also online .
Could you list the books?
 
joshmccraney said:
Thanks! Then the momentum equation on the CV of fluid from station 1 to station 2 (assuming the hydraulic jump is stationary) is $$\partial_t \iiint \rho \vec{V} \, dV + \iint_{\partial V} \rho \vec{V} (\vec{V_{rel}}\cdot \hat{n})\, dS = \sum F\implies\\
\iint_{\partial V} \rho \vec{V} (\vec{V_{rel}}\cdot \hat{n})\, dS = -\iint_{\partial V} P \hat{n}\, dS\implies\\
\int_0^b \int_0^{h_1} \rho V_1 \hat{i} (V_1 \hat{i} \cdot(-\hat{i}))\, dz\,dy+\int_0^b \int_0^{h_2} \rho V_2 \hat{i} (V_2 \hat{i} \cdot(\hat{i}))\, dz\,dy = -\int_0^b \int_0^{h_1}P_1 (-\hat{i}) \, dz\,dy -\int_0^b \int_0^{h_2}P_2 \hat{i} \, dz\,dy\implies\\
\rho (V_2^2 h_2-V_1^2 h_1) = P_1h_1-P_2h_2$$ Hydrostatic pressure is ##P=\rho g z##, so assuming this holds then average pressure along ##A_1## is $$P_1 = \frac{1}{b h_1}\int_0^b \int_0^{h_1} \rho g z \, dz \, dy = \frac{\rho g h_1}{2}$$ where I assume atmospheric pressure is 0. Then the final result for the momentum balance is
$$V_2^2 h_2-V_1^2 h_1 = \frac{g h_1^2}{2}-\frac{g h_2^2}{2}$$ This along with continuity gives us the solution in terms of asked quantities. Is this correct?
This is what I got.
So viscous dissipation does not change the time derivative of momentum? Could you briefly explain why?
The system is at steady state.
So how would this balance change if we were not to ignore the horizontal streambed stress? I think the additional force would be $$-\iint_{\partial V} \mu \vec{V} \otimes \vec{V} \cdot \hat{n} \, dS$$ Would we have to take this to Navier Stokes?
If you wanted to include the horizontal streambed stress, you would have to get the viscous shear stress at the wall. But to do that, you would have to solve the turbulent NS equations (say using a CFD code) inside the control volume.
 
joshmccraney said:
Thanks! Then the momentum equation on the CV of fluid from station 1 to station 2 (assuming the hydraulic jump is stationary) is $$\partial_t \iiint \rho \vec{V} \, dV + \iint_{\partial V} \rho \vec{V} (\vec{V_{rel}}\cdot \hat{n})\, dS = \sum F\implies\\
\iint_{\partial V} \rho \vec{V} (\vec{V_{rel}}\cdot \hat{n})\, dS = -\iint_{\partial V} P \hat{n}\, dS\implies\\
\int_0^b \int_0^{h_1} \rho V_1 \hat{i} (V_1 \hat{i} \cdot(-\hat{i}))\, dz\,dy+\int_0^b \int_0^{h_2} \rho V_2 \hat{i} (V_2 \hat{i} \cdot(\hat{i}))\, dz\,dy = -\int_0^b \int_0^{h_1}P_1 (-\hat{i}) \, dz\,dy -\int_0^b \int_0^{h_2}P_2 \hat{i} \, dz\,dy\implies\\
\rho (V_2^2 h_2-V_1^2 h_1) = P_1h_1-P_2h_2$$ Hydrostatic pressure is ##P=\rho g z##, so assuming this holds then average pressure along ##A_1## is $$P_1 = \frac{1}{b h_1}\int_0^b \int_0^{h_1} \rho g z \, dz \, dy = \frac{\rho g h_1}{2}$$ where I assume atmospheric pressure is 0. Then the final result for the momentum balance is
$$V_2^2 h_2-V_1^2 h_1 = \frac{g h_1^2}{2}-\frac{g h_2^2}{2}$$ This along with continuity gives us the solution in terms of asked quantities. Is this correct?
This is what I got.
So viscous dissipation does not change the time derivative of momentum? Could you briefly explain why?
The system is at steady state.
So how would this balance change if we were not to ignore the horizontal streambed stress? I think the additional force would be $$-\iint_{\partial V} \mu \vec{V} \otimes \vec{V} \cdot \hat{n} \, dS$$ Would we have to take this to Navier Stokes?
If you wanted to include the horizontal streambed stress, you would have to get the viscous shear stress at the wall. But to do that, you would have to solve the turbulent NS equations (say using a CFD code) inside the control volume.
 
joshmccraney said:
Could you list the books?

The one I actually have is Massey - Mechanics of Fluids 2nd Edition . There is good coverage in it of hydraulic jumps and related things like broad weirs and under water obstructions
 
http://www.slideshare.net/NiteshSingh36/massey-mechanicsoffluids-1
 
  • #10
Thank you all very much!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 37 ·
2
Replies
37
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 24 ·
Replies
24
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
3K