Graduate How to solve this definite integral?

Click For Summary
SUMMARY

The forum discussion focuses on solving the definite integral involving the incomplete gamma function, specifically the expression $$\displaystyle \int_{0}^{x}\!{\frac {\Gamma \left( \alpha,\beta\,t-\lambda\,t \right) }{{{\rm e}^{\lambda\,t}}}}\,{\rm d}t$$. The solution is derived through integration techniques, including substitution and the properties of the incomplete gamma function. The final result is expressed in terms of the parameters $\beta$, $\lambda$, and $\alpha$, showcasing the complexity of the integral and the necessary transformations to arrive at the solution.

PREREQUISITES
  • Understanding of definite integrals and integration techniques
  • Familiarity with the incomplete gamma function and its properties
  • Knowledge of exponential functions and their integrals
  • Proficiency in mathematical notation and manipulation of integrals
NEXT STEPS
  • Study the properties and applications of the incomplete gamma function
  • Learn advanced integration techniques, including integration by substitution and integration by parts
  • Explore the use of special functions in solving complex integrals
  • Investigate numerical methods for evaluating definite integrals when analytical solutions are complex
USEFUL FOR

Mathematicians, physicists, and engineers who are involved in advanced calculus, particularly those working with integrals involving special functions and exponential decay models.

Ad VanderVen
Messages
169
Reaction score
13
TL;DR
How to solve the integral ##\int_{0}^{x}\!-{\frac {\lambda\,{{\rm e}^{-\lambda\,t}}{\beta}^{\alpha} \left( -\lambda+\beta \right) ^{-\alpha} \left( -\Gamma \left( \alpha \right) +\Gamma \left( \alpha, \left( -\lambda+\beta \right) t \right) \right)}{\Gamma \left( \alpha \right) }}\,{\rm d}t##
I would like to solve the integral underneath:

$$\displaystyle \int_{0}^{x}\!-{\frac {\lambda\,{{\rm e}^{-\lambda\,t}}{\beta}^{\alpha} \left( -\lambda+\beta \right) ^{-\alpha} \left( -\Gamma \left( \alpha \right) +\Gamma \left( \alpha, \left( -\lambda+\beta \right) t \right) \right)}{\Gamma \left( \alpha \right) }}\,{\rm d}t$$

I tried it before using Integration by Substitution, but that didn't help either.
 
Last edited:
Physics news on Phys.org
The integrand is written as
Ae^{-\lambda t}+Be^{-\lambda t}\Gamma (\alpha ,Ct)
The first term is easy to integrate. What is two variable function of ##\Gamma(\alpha, Ct)## you wrote ?

[EDIT] It is an incomplete gamma function.
 
Last edited:
The only non-trivial part is <br /> \int_0^x e^{-\lambda t} \Gamma(\alpha, kt)\,dt<br /> = \frac 1k \int_0^{kx} e^{-\mu s}\Gamma(\alpha, s)\,ds<br /> where k = \beta - \lambda and \mu = \lambda/k. Now <br /> \Gamma(\alpha, s) = \int_s^\infty t^{\alpha - 1} e^{-t}\,dt = \Gamma(\alpha) - \int_0^s t^{\alpha - 1} e^{-t}\,dt so <br /> \int_0^{X} e^{-\mu s} \Gamma(\alpha, s)\,ds = \int_0^X e^{-\mu s} \Gamma(\alpha)\,ds -<br /> \int_0^X \int_0^s e^{-\mu s - t} t^{\alpha - 1}\,dt\,ds. The first integral is trivial; in the second we can set (u,v) = (\mu s + t, t) and we find that <br /> \int_0^X \int_0^s e^{-\mu s - t} t^{\alpha - 1}\,dt\,ds = \frac{1}{\mu}\int_0^{X}<br /> \int_{u/(1+ \mu)}^u e^{-u} v^{\alpha - 1}\,dv\,du <br /> + \frac{1}{\mu} \int_X^{(1 + \mu)X} \int_{u/(1 + \mu)}^X e^{-u} v^{\alpha - 1}\,dv\,du and after doing the inner integral over v you will be left with integrals of e^{-u} (trivial) and e^{-u} u^\alpha (expressible in terms of incomplete gamma functions).

EDIT: The limits should be 0 \leq u \leq (1 + \mu)X and \max\{0, u - \mu X\} \leq v \leq u/(1 + \mu). That introduces a term of the form \int_{\mu X}^{(1 + \mu)X} e^{-u} (u - \mu X)^\alpha \,du = e^{-\mu X} \int_0^{X} e^{-z}z^\alpha\,dz.
 
Last edited:
  • Like
Likes anuttarasammyak, ergospherical, fresh_42 and 1 other person
Hi folks, I'm trying to respond to your answers, but I can't read them because of the right column, which prevents me from seeing the whole page. I don't know how to click away that column.
 
pasmith said:
The only non-trivial part is <br /> \int_0^x e^{-\lambda t} \Gamma(\alpha, kt)\,dt<br /> = \frac 1k \int_0^{kx} e^{-\mu s}\Gamma(\alpha, s)\,ds<br /> where k = \beta - \lambda and \mu = \lambda/k.

This can be tidied up considerably: <br /> \begin{align*}<br /> \frac{1}{k}\int_0^{kx} e^{-\mu t} \Gamma(\alpha, t)\,dt &amp;= \frac 1k \int_0^{kx} \int_t^\infty e^{-\mu t-s}s^{\alpha - 1}\,ds\,dt \\<br /> &amp;= \frac 1{\mu k} \int_0^\infty v^{\alpha - 1} \int_v^{U(v)} e^{-u}\,du\,dv \\<br /> &amp;= \frac 1{\mu k} \int_0^\infty v^{\alpha - 1} (e^{-v} - e^{-U(v)})\,dv<br /> \end{align*} using (u,v) = (\mu t+s,s) where U(v) = \min\{(1 + \mu)v, v + \mu kx\}. Hence <br /> \begin{align*}<br /> \frac{1}{k} \int_0^{kx} e^{-\mu t} \Gamma(\alpha, t)\,dt &amp;= \frac{\Gamma(\alpha)}{\mu k}<br /> - \frac{1}{\mu k}\int_0^{kx} v^{\alpha - 1}e^{-(1 + \mu)v}\,dv <br /> - \frac{e^{-\mu kx}}{\mu k} \int_{kx}^\infty v^{\alpha-1} e^{-v}\,dv \\<br /> &amp;= \frac{\Gamma(\alpha)}{\mu k} - \frac{\gamma(\alpha, (1+\mu)kx)}{\mu k(1 + \mu)^\alpha} <br /> - \frac{e^{-\mu kx} \Gamma(\alpha,kx)}{\mu k}.<br /> \end{align*}
 
pasmith

For me the non-trivial part is:

$$\displaystyle \int_{0}^{x}\!{\frac {\Gamma \left( \alpha,\beta\,t-\lambda\,t \right) }{{{\rm e}^{\lambda\,t}}}}\,{\rm d}t$$

Please, would you be so kind to start from this equation.
 
pasmith

Sorry for my earlier reply. Now that I've looked again, I've seen that you've actually started from the equation I've suggested.
 
pasmith

With your help I got the final solution for the definite integral:

$$\displaystyle {\frac {{\beta}^{\alpha} \left( {{\rm e}^{\lambda\,x}}-1 \right) {{\rm e}^{-\lambda\,x}}}{ \left( -\lambda+\beta \right) ^{\alpha}}}-{\frac {{\beta}^{\alpha}}{\alpha\, \left( 1+\alpha \right) \left( -\lambda+\beta \right) ^{\alpha}\Gamma \left( \alpha \right) } \left( -{{\rm e}^{-x\beta}} \left( {\frac {\beta}{-\lambda+\beta}} \right) ^{-\alpha} \left( x\beta \right) ^{\alpha}\alpha- \left( x\beta \right) ^{\alpha/2}{{\rm e}^{-1/2\,x\beta}}{{WhittakerM}_{\alpha/2,\,\alpha/2+1/2}\left(x\beta\right)} \left( {\frac {\beta}{-\lambda+\beta}} \right) ^{-\alpha}-{{\rm e}^{-x\beta}} \left( {\frac {\beta}{-\lambda+\beta}} \right) ^{-\alpha} \left( x\beta \right) ^{\alpha}-{{\rm e}^{-\lambda\,x}}\Gamma \left( \alpha, \left( -\lambda+\beta \right) x \right) {\alpha}^{2}+\Gamma \left( \alpha \right) {\alpha}^{2}-{{\rm e}^{-\lambda\,x}}\Gamma \left( \alpha, \left( -\lambda+\beta \right) x \right) \alpha+\Gamma \left( \alpha \right) \alpha \right) }$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
46
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K