(In the following, z
* denotes the complex conjugate of z.)
The first thing to do is to make the denominator real (you will see why this makes sense):
<br />
U<br />
\frac{<br />
\left(<br />
e^{a(H-y)}<br />
e^{i[a(H-y) +nt]}<br />
-<br />
e^{-a(H-y)}<br />
e^{-i[a(H-y) +nt]}<br />
\right)<br />
\left(<br />
e^{aH}<br />
e^{iaH}<br />
-<br />
e^{-aH}<br />
e^{-iaH}<br />
\right)^{*}<br />
}<br />
{<br />
\left(<br />
e^{aH}<br />
e^{iaH}<br />
-<br />
e^{-aH}<br />
e^{-iaH}<br />
\right)<br />
\left(<br />
e^{aH}<br />
e^{iaH}<br />
-<br />
e^{-aH}<br />
e^{-iaH}<br />
\right)^{*}<br />
}<br />
=<br />
<br />
U<br />
\frac{<br />
\left(<br />
e^{a(H-y)}<br />
e^{i[a(H-y) +nt]}<br />
-<br />
e^{-a(H-y)}<br />
e^{-i[a(H-y) +nt]}<br />
\right)<br />
\left(<br />
e^{aH}<br />
e^{-iaH}<br />
-<br />
e^{-aH}<br />
e^{iaH}<br />
\right)<br />
}<br />
{<br />
\left(<br />
e^{aH}<br />
e^{iaH}<br />
-<br />
e^{-aH}<br />
e^{-iaH}<br />
\right)<br />
\left(<br />
e^{aH}<br />
e^{-iaH}<br />
-<br />
e^{-aH}<br />
e^{iaH}<br />
\right)<br />
}<br />
=<br />
<br />
U<br />
\frac{<br />
e^{a(2H-y)}<br />
e^{i[-ay+nt]}<br />
-<br />
e^{-ay}<br />
e^{i[a(2H-y)+nt]}<br />
-<br />
e^{ay}<br />
e^{-i[a(2H-y)+nt]}<br />
+<br />
e^{-a(2H-y)}<br />
e^{-i[-ay+nt]}<br />
}<br />
{<br />
e^{2aH}<br />
-<br />
e^{i2aH}<br />
-<br />
e^{-i2aH}<br />
+<br />
e^{-2aH}<br />
}<br />
=<br />
<br />
U<br />
\frac{<br />
e^{a(2H-y)}<br />
e^{i[-ay+nt]}<br />
-<br />
e^{-ay}<br />
e^{i[a(2H-y)+nt]}<br />
-<br />
e^{ay}<br />
e^{-i[a(2H-y)+nt]}<br />
+<br />
e^{-a(2H-y)}<br />
e^{-i[-ay+nt]}<br />
}<br />
{<br />
2\cosh(2aH)<br />
-<br />
2\cos(2aH)<br />
}<br />
The real part of this expression is now easily seen (as described above) to be
<br />
U<br />
\frac{<br />
e^{a(2H-y)}<br />
\cos[-ay+nt]<br />
-<br />
e^{-ay}<br />
\cos[a(2H-y)+nt]<br />
-<br />
e^{ay}<br />
\cos[a(2H-y)+nt]<br />
+<br />
e^{-a(2H-y)}<br />
\cos[-ay+nt]<br />
}<br />
{<br />
\cosh(2aH)<br />
-<br />
\cos(2aH)<br />
}<br />
=<br />
<br />
2U<br />
\frac{<br />
\cosh(a(2H-y))<br />
\cos[-ay+nt]<br />
-<br />
\cosh(ay)<br />
\cos[a(2H-y)+nt]<br />
}<br />
{<br />
\cosh(2aH)<br />
-<br />
\cos(2aH)<br />
}<br />
...I think. You should check it carefully.
