How Would Physics Change Without Covariant and Contravariant Tensors?

extrads
Messages
16
Reaction score
0
If the notions of covariant and contravariant tensors were not introduced,what would happen?E.g. what form will the Einstein E.q. Guv=8πTuv be changed into ?
 
Physics news on Phys.org
extrads said:
If the notions of covariant and contravariant tensors were not introduced,what would happen?

I'm not sure what you mean by this. Covariant and contravariant tensors represent distinct kinds of physical things; if you know the metric, you can compute correspondences between them, but they are still distinct concepts. So if you're going to use tensors at all, you need both kinds.
 
If the OP is asking whether we could express Guv=8πTuv without tensors, I would have to say that it can be done, but the central property of coordinate independence would still be there ( ie 'tensoriality').
 
The notion of contravariant and covariant is always there. It is made explicit in index notation but you can just as well write it in index-free notation as ##G = 8\pi T## but you cannot get rid of the tensorial nature of the classical EFEs. The extension of the concept of a tensor is a spinor: http://en.wikipedia.org/wiki/Spinor
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top