How Would You Calculate the Force of a Falling 220kV Conductor?

AI Thread Summary
Calculating the force of a falling 220kV conductor involves considering both vertical and horizontal forces, especially during scenarios like transferring the cable between towers or sagging it. The weight of the cable will not fully impact the scaffold, as some weight is supported by the towers and ground. When the cable breaks, it will not drop straight down but will be propelled towards the remaining attached tower, complicating the fall dynamics. Additionally, external factors like wind and ice can significantly affect the cable's behavior during a fall, necessitating a robust scaffold design. Proper mesh installation is essential to prevent cable loops from obstructing the railway.
Chadwick
Messages
2
Reaction score
0
TL;DR Summary
How would you calculate the force at a point of a falling 220kV Conductor?
Summary: How would you calculate the force at a point of a falling 220kV Conductor?

Hi, bit a of a funny one.
I need to calculate the force of a cable falling at a point (left edge of a scaffold) as detailed in the attached sketch. (Not to scale what so ever).
We’re building a scaffold between two towers to protect a railway. It needs to withstand at least 1 cable falling, if it were to fall it would release at the tower, I would consider whichever the worst case would be at.

Considering the worst case scenario what would the force be on the scaffold?

Now it would be simple if we treat the cable as a solid, but since it is a cable how would this affect the fall?
I imagine the whole weight of the cable would not be landing on the scaffold, some weight would be taken by the tower and possibly the ground.

Any help you can give would be appreciated!
 

Attachments

Engineering news on Phys.org
Wow. Tough question. I moved it to ME because it appears that the electricity plays no role.

How paranoid worst case do you need? I'm wondering of the end of the cable can snap like a bull whip.
 
Thanks for that!

Hard question when you're trying to balance over engineering and costs haha.
If our aim is to protect the railway we might be okay with assuming that the whip would occuur at the ends, far enough from the scaffold.Also, appologies, forgot to include a fairly crucial element to the problem.

Failure could potentially occur at when transferring a cable from one tower to the other, or when sagging the cable, this would introduce horizontal forces onto the cable which would impact the fall of the cable.

In transferring the winches would exert roughly 2.7t (27kN) horizontally onto the cable, when sagging a design 3.7t (37kN) would be applied.

In case it wasn't complicated enough :)
 
When a cable breaks it will probably be at the support point where there is an acoustic impedance mismatch.

The end where the break occurs will not start to fall until tension in the cable has been relieved. That involves the speed of a tension wave in the cable. The cable will not drop flat on the ground across your scaffold, it will be propelled toward the remaining attached tower by cable tension. It will coil, kink and tangle before it reaches the ground. The scaffold will need a mesh that prevents loops of cable falling through to obstruct the track.

Wind force on a cable during a wind storm is often greater than gravity, so you can expect the cable to fall sideways by more than one pylon height. I have found antenna elements 3 times further from the tower than the antenna height, some have not yet been found.

Ice buildup will change the game when lengths of ice fall on the tracks. Ice will increase windage, but will reduce the problem of stored energy in the tension.
 
  • Like
Likes russ_watters
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
TL;DR Summary: Heard in the news about using sonar to locate the sub Hello : After the sinking of the ship near the Greek shores , carrying of alot of people , there was another accident that include 5 tourists and a submarine visiting the titanic , which went missing Some technical notes captured my attention, that there us few sonar devices are hearing sounds repeated every 30 seconds , but they are not able to locate the source Is it possible that the sound waves are reflecting from...
Back
Top