This is one of those times when it might be more helpful to think of the electron as being more like a wave. You could point to the peak of a wave, and then the trough, and then several other places in between, and asked the question, "is this the location of the wave?" And the answer each time would be, "yes."
You see, according to the theory, it isn't just that we cannot know the exact location of the electron. It would seem that an electron actually does not have an exact location.
Here is an analogy that I frequently use, but please bear in mind that it is only an analogy:
Suppose you see a photograph of a baseball. The ball has just been thrown, and you are seeing it in flight between the pitcher's mound and homebase. The camera is looking straight down from overhead, and you are seeing the ball against a uniform background of grass. How can you tell which direction the ball is traveling?
Well, if the camera was using high-speed film and a very fast shutter speed, it would be nearly impossible to tell which way the ball is going. You could point very precisely to the edges of the ball on the photo, and say that you know the location of the ball. You could tell very definitely where in the picture the ball is and where it is not. But you could not say where the ball is headed.
Now, no matter how fast the shutter speed, if the ball was traveling when the photo was taken, there will be some blurring along the leading and trailing edges of the ball in the photo. If you blow the photo up to a very large size you might be able to see that blurring. Then you could point to the edges that are slightly blurred and say that the ball must of the have been traveling along that path, but it would only be a very vageu notion odf the direction of travel. However, due to the blurring at the edges, you have now lost the very sharp line along which you could say, " here there is baseball, and here there is none."
On the other hand, you could have the picture taken with low-speed film and a very long exposure. Then you would see the baseball as a long streak across the photo, and you have a very excellent idea of its path of travel. However, you would've lost any notion of its location. You could point to any spot along that streak and ask, "was this the location of the ball at the time the photo was taken?" And the answer would be, "yes."
Again, I will mention that this is only an analogy illustrating the mutually exclusive nature of knowing both the location and the momentum of nearly anything. In this analogy, for instance, the ball has a definite location and a definite path of travel, and we are simply unable to pin down both. In particle physics, it is generally believed that this is not the case. The particles literally have only a probability of being in a certain location and a probability of traveling a certain path. One can calculate the locations with the highest probability, but never come up with a single location with a 100% probability (definitely the exact location of the particle). Neither can one calculate any location in the universe that has a 0% probability. So, you could point at any place in the whole universe and ask, "is this the location of the electron from my example?" And the answer would be, "probably not, but maybe."
I think that a lot of the difficulty people have with this theory is not that they couldn't understand it, but that their mind rejects it. Our everyday experience tells us that objects cannot exist in such a state. Because no one has "everyday experience" with particles on the Quantum level, some of their behaviors tend to go against what we have learned to accept as possible. So it may help you to start out by trying to convince yourself to believe that electrons really do exist only as clouds of probability, not as the little plastic ball you've seen orbiting the nucleus in models in the classroom. After accepting and believing, understanding should come more easily.