I I have a question about gravity -- If the value of the energy momentum tensor (Tμν) becomes zero, can it become gravitational-free?

seonjunyoo
Messages
5
Reaction score
1
R μν − 1/2g μν R= 8πG/c^4T μν

In this formula, if the value of the energy momentum tensor(Tμν) becomes zero, can it become gravitational-free?
 
Physics news on Phys.org
seonjunyoo said:
R μν − 1/2g μν R= 8πG/c^4T μν

In this formula, if the value of the energy momentum tensor(Tμν) becomes zero, can it become gravitational-free?
Only if it's zero everywhere. Think of electromagnetism. This is an EM field everywhere caused by a single charge.
 
PS also, in the Schwartzschild black hole geometry, there is no stress-energy. It's a vacuum solution. There is however a characteristic mass and a singularity.
 
PeroK said:
Only if it's zero everywhere. Think of electromagnetism. This is an EM field everywhere caused by a single charge.
Then, if the energy momentum tensor everywhere is zero, is it possible to assume that it is anti-gravity?
 
seonjunyoo said:
Then, if the energy momentum tensor everywhere is zero, is it possible to assume that it is anti-gravity?
No, that's just empty space.
 
  • Like
Likes Vanadium 50 and PeroK
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top