Need Help Solving Water Tank Experiment

  • Thread starter Thread starter Jack16
  • Start date Start date
AI Thread Summary
In the water tank experiment, waves generated with a crest distance of 2.5 cm pass through two openings 5.0 cm apart. To experience little to no wave action, one should stand at a 90-degree angle from the straight-through direction, where destructive interference occurs. The diffraction equation Yk/D = kλ/d helps determine the distance between wave crests and the interference pattern. The first minimum of destructive interference will be symmetrical around this angle. Understanding these principles is crucial for solving the experiment effectively.
Jack16
Messages
13
Reaction score
0
I Need Some Help:(...

In a water tank experiment,water waves are generated with their srests 2.5 cmapart and parallel.they pass through two openings 5.0 cm apart in a long wooden board.If the end of the tank is 2.0 m beyond the boards,where would you stand ,relative to the "straight - through " direction,so that you received little or no wave action?

this question seems very easy but i just could not end up solvin it ,i used the equation Yk/D = k x lambda /d ,but i couldn't quiet understand how i would find where it would have no wave reaction

I am waiting for your comments,

thanks already...
 
Physics news on Phys.org
you want have any wave where the two waves which are coherent meet out of phase and cancel each other out...
so from the given data we can see that lambda=2.5cm, D=200cm, x=5cm So you can find the separation the first "dark" fringe has with the central one.
2.5=5y/200 So y=100cm
Although I have not completely understood the tern "Straight through" I think Iam correct
 


Hello there,

I can understand your frustration with this experiment. It can be tricky to solve, but let me break it down for you.

First, let's define some variables:
- Yk: distance from the center of one wave crest to the center of the next crest
- D: distance between the two openings in the wooden board (5.0 cm in this case)
- k: wave number, which is equal to 2π/λ (where λ is the wavelength)
- d: distance from the openings to the end of the tank (2.0 m in this case)

Now, the equation you mentioned (Yk/D = kλ/d) is known as the diffraction equation. This equation tells us that the distance between two wave crests (Yk) is equal to the product of the wave number (k) and the wavelength (λ), divided by the distance between the openings (D) and the distance from the openings to the end of the tank (d). This equation is used to calculate the diffraction pattern of the waves as they pass through the openings.

To find where there will be little to no wave action, we need to look at the diffraction pattern. This pattern will show us where the waves interfere constructively (creating larger waves) and where they interfere destructively (canceling each other out).

In this case, since the two openings are 5.0 cm apart, the diffraction pattern will be symmetrical and the first minimum (destructive interference) will occur at an angle of 90 degrees from the straight-through direction. This means that if you stand at a 90-degree angle from the straight-through direction (either to the left or right), you will receive little to no wave action.

I hope this helps you solve the experiment. If you have any further questions, feel free to ask. Good luck!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top