MHB (IB18) A box contains 100 cards

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Box Cards
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
https://www.physicsforums.com/attachments/1141

(a) I presume the frequency row has to equal 100
so
$$k=100 - (26 + 10 + 20 + 29 + 11)= 4$$(b)(i) again presume the median is based on frequency and on ordered list
so
median of $4\ 10\ 11 \ 20\ 26\ 29 = \frac{31}{2}$ or $15.5$

(ii) interquartile range? isn't this data list 100 numbers long?
or is $Q_1=10$ and $Q_3=26$ so interquartile range$=26-10=13$
 
Mathematics news on Phys.org
Re: (IB18) A box contains a 100 cards

For part b), you want to use the data, not the frequencies, in your calculations. To find the median (or $Q_2$) you observe that there is an even number of elements, so you take the arithmetic mean of the 50th and 51st elements.

Now, since there is an even number of elements in each half, you want to take the arithmetic mean of the 25th and 26th elements as $Q_1$ and the arithmetic mean of the 75th and 76th elements as $Q_3$. And then the inter-quartile range is given by:

$$IQR=Q_3-Q_1$$
 
Re: (IB18) A box contains a 100 cards

MarkFL said:
For part b), you want to use the data, not the frequencies, in your calculations. To find the median (or $Q_2$) you observe that there is an even number of elements, so you take the arithmetic mean of the 50th and 51st elements.

Now, since there is an even number of elements in each half, you want to take the arithmetic mean of the 25th and 26th elements as $Q_1$ and the arithmetic mean of the 75th and 76th elements as $Q_3$. And then the inter-quartile range is given by:

$$IQR=Q_3-Q_1$$

I got 5-1=4 IQR
 
Re: (IB18) A box contains a 100 cards

karush said:
I got 5-1=4 IQR

Yes, I got the same. :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top