Ideal gas law, applied to non-rigid container

Click For Summary
SUMMARY

The discussion focuses on applying the ideal gas law to determine the internal volume of a non-rigid container. The process involves measuring the final equilibrium pressure after allowing a known volume container to communicate with an unknown volume container. The calculations using the ideal gas law (PV = nRT) yield accurate results for rigid containers, but discrepancies arise with non-rigid containers due to their ability to expand under pressure, affecting the final pressure readings. The participants suggest that the dynamics of compressible fluids in non-rigid geometries complicate theoretical predictions.

PREREQUISITES
  • Understanding of the ideal gas law (PV = nRT)
  • Knowledge of pressure measurement techniques
  • Familiarity with concepts of equilibrium in gas dynamics
  • Basic principles of fluid mechanics and container rigidity
NEXT STEPS
  • Research the effects of container elasticity on gas pressure dynamics
  • Explore the mathematical modeling of compressible fluid dynamics
  • Investigate experimental methods for measuring gas pressures in non-rigid containers
  • Learn about partial differential equations (PDEs) in fluid mechanics
USEFUL FOR

Engineers, physicists, and researchers interested in gas dynamics, particularly those dealing with non-rigid containers and pressure measurement techniques.

ARQuattr
Messages
2
Reaction score
0
I'm trying to determine the internal volume of a container using the ideal gas law principle.

1. A container of known volume is pressurized with air to some known value relative to ambient.
2. The container of unknown volume is vented to ambient.
3. Temperature is constant for all air masses and throughout the experiment.
4. The vent on the container under test is sealed and the containers are allowed to communicate air mass.
5. The final equilibrium pressure of the combined air mass is measured.
6. Determine the unknown volume, given the control volume, initial pressure, final pressure.

Using PV = nRT, I have

PcVc = ncRTc, PuVu = nuRTu, and PfVf = nfRTf, or

nc = PcVc/RTc, nu = PuVu/RTu, and nf = PfVf/RTf

for subscripts c (control container), u (unknown container), and f (final), where

Vf = Vc + Vu, and nf = nc + nu

Then,

PfVf/RTf = PcVc/RTc + PuVu/RTu

and assuming T constant,

PfVf = PcVc + PuVu

Since the unknown container starts at ambient pressure, Pu = 0, so

PfVf = PcVc, or Pf(Vc+Vu) = PcVc

(I've tried this using absolute pressures and it works out the same.)

So the unknown quantity is

Vu = Vc(Pc - Pf)/Pf

Experimentally, this works fine for rigid unknown containers, but when I use a non-rigid container it doesn't. Why not?

By non-rigid, I'm referring to something like a plastic jug with a fairly well-defined volume, but if pressurized, even to only a fraction of a psig, the sides bulge out slightly. This drastically affects the final pressure, but I don't see how. I understand that the volume will increase slightly because of the measurement process, (and I'm able to accept the error in volume measurement due to the expansion of the container,) but the calculation yields a result that is way off.

I can also imagine how the container walls act like springs to increase resistance as it grows, but I don't see how that changes things. The pressure introduced by the control vessel causes the container to expand which allows the pressure to drop until it all reaches equilibrium and my end result should be the final container volume, right?

What am I missing?

Thanks in advance.
 
Science news on Phys.org
At first glance it sounds like you have a nasty semi-free-boundary problem that I don't even begin to know how to pose mathematically. Certainly the final pressure depends on the rigidity of the containing vessel.
 
Thanks tankFan86 for your reply. Experimentally and intuitively, you're right, but I can't see how the theory supports it. Do you know what I might look for to research this further?

Thanks again.
 
I think you have posed an insanely hard question. If immediate results are required, I think collecting some experimental data might tell you lot about this problem. If you really want to explore the problem theoretically, you are dealing with the dynamics of a compressible fluid in a crazy geometry, something that I do not think has many good theoretical results. The theory must involve many coupled PDEs!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 61 ·
3
Replies
61
Views
7K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
12
Views
2K