MHB Ideal Gas Law: Pressure, Volume, & Temperature Changes

Click For Summary
The ideal gas law, PV = nRT, relates pressure, volume, and temperature of a gas. In the scenario presented, two moles of gas are under 5 atmospheres of pressure, with pressure decreasing at 0.3 atm/min and volume increasing at 0.6 L/min. To find the rate of change of temperature, T, with respect to time, it is necessary to differentiate the equation with respect to time, applying the product rule. The discussion emphasizes the importance of correctly applying differentiation techniques to solve for dT/dt, while also ensuring dimensional consistency in the equations used. The final approach involves expressing T in terms of P and V, followed by differentiation to find the desired rate of change.
ayahouyee
Messages
12
Reaction score
0
The ideal gas law states that PV = nRT where P is the pressure in atmospheres, V
is the volume in litres, n is the number of moles, R = 8.314 Latm/Kmol is the gas
constant, and T is the temperature in Kelvins. Suppose that at a specific instance that
two moles of gas is under 5 atmospheres of pressure where the pressure is decreasing at
0.3 atm/min. Also at this moment the volume is 15 L and is increasing at 0.6 L/min.
What is the rate of change of the temperature with respect to time?

Thanks in advance!
 
Physics news on Phys.org
Look, you need to make an attempt at the solution or at least explain your difficulty.

Express T through P(t) and V(t). Then find the derivative dT/dt of T w.r.t. time treating P and V as functions of t.
 
Okay, so first i have to differentiate both sides with respect to time:

P(dV/dt) + V(dP/dt) = R(n(dT/dt) + T(dn/dt))

We're told that dP/dt = -0.3 atm/min, n = 2, P = 5 atm, V = 15 L, dV/dt = 0.6 L/min:

Plugging all this in:

(5 atm)(0.6 L/min) + (15 L)(-0.3 atm/min) = (8.314 L*atm/K*mol)*(2)(dT/dt)

This is where i get stuck! we are not allowed to use calculators so i don't know how i am supposed to find my final answer :(
 
I would do as suggested by Evgeny.Makarov and write:

$$T=\frac{1}{nR}PV$$

Now, the constant:

$$\frac{1}{nR}$$

will have units of:

$$\frac{1}{\text{mol}\cdot\frac{\text{J}}{\text{mol K}}}=\frac{\text{K}}{\text{J}}=\frac{\text{temperature}}{\text{energy}}$$

The two factors:

$$PV$$

will have units of:

$$\frac{\text{force}}{\text{length}^2}\cdot\text{length}^3=\text{force}\cdot\text{length}=\text{work}=\text{energy}$$

Thus, the equation is dimensionally consistent. The constant factor is:

$$\frac{1}{2\cdot8.314}=\frac{1}{16.628}=\frac{1000}{16628}=\frac{250}{4157}$$

So, we may now write:

$$T=\frac{250}{4157}PV$$

Now try differentiating with respect to time $t$.
 
DT/dt = 250/4157P(DP/dt) + 250/4157(DV/dt)

is that right?
 
ayahouyee said:
DT/dt = 250/4157P(DP/dt) + 250/4157(DV/dt)

is that right?

No, you want to apply the product rule on the right side. Recall:

$$\frac{d}{dx}\left(f(x)g(x) \right)=f(x)\frac{d}{dx}\left(g(x) \right)+\frac{d}{dx}\left(f(x) \right)g(x)$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
2
Views
2K
Replies
35
Views
5K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 60 ·
3
Replies
60
Views
9K
  • · Replies 69 ·
3
Replies
69
Views
7K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K