Ideal/Submodule Query - Proving R is Principal Ideal Domain

  • Thread starter Thread starter Ad123q
  • Start date Start date
Ad123q
Messages
19
Reaction score
0
Hi,

This has came up in a proof I'm going through, and need some guidance.

The proposition is that if R is a principal ideal domain, then every submodule of a free module is finitely generated.

The proof starts let F isomorphic to R^n be free, with basis {e1, ... , en}.
Let P be a submodule of F.
Use induction on n.
Case n=1: F isomorphic to R (R is a module over R). Then P is a submodule of F which is isomorphic to R. This then implies that P is an ideal in R.

This is where I'm stuck, I'm not sure how P a submodule of F which is isomorphic to R implies that P is an ideal in R.

Any help appreciated - just ask if you need more background on the proposition.

Thanks!
 
Physics news on Phys.org
the statement is that every submodule of a finitely generated free module is finitely generated and free of same or smaller rank. the proof is by induction, and the rank one case is by the definition of a pid.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top