Identical Particles - Silly question

IHateMayonnaise
Messages
87
Reaction score
0
Identical Particles -- Silly question

Homework Statement



Reviewing for final, can someone check this really quick?

Two non-interacting particles are in an infinite cube, each side of length L. Determine the two-particle wave function and also the energy of the ground state and the first excited state:

a) The particles are distinguishable

b) The particles are identical bosons of spin 0

c) The particles are identical fermions of spin 1/2 (also: identify the singlet and triplet states)

Homework Equations



For a 3-D infinite potential box:

\psi(x,y,z)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_x \pi x}{L}\right)Sin\left(\frac{n_y \pi y}{L}\right)Sin\left(\frac{n_z \pi z}{L}\right)

E_{n_xn_yn_z}=\frac{\hbar^2 \pi^2}{2 m L^2} (n_x^2+n_y^2+n_z^2)

And also:

\psi(\vec{r_1},\vec{r_2})_{\pm}=A[\psi_a(\vec{r_1})\psi_b(\vec{r_2})\pm\psi_a(\vec{r_2})\psi_b(\vec{r_1})]

And don't forget about spin:

\psi(x)=\psi(x)\chi^{\pm}

The Attempt at a Solution



a) For distinguishable

Ground state:
E_{111}=\frac{3\hbar^2 \pi^2}{2 m L^2}

First excited state (degeneracy exists):
E_{112}=E_{121}=E_{211}=\frac{3\hbar^2 \pi^2}{ m L^2}

\psi(\vec{r_1},\vec{r_2})=\Psi_a(x_1,y_1,z_1)\Psi_b(x_2,y_2,z_2)

Where
\psi_a(x_1,y_1,z_1)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_1} \pi x_1}{L}\right)Sin\left(\frac{n_{y_1} \pi y_1}{L}\right)Sin\left(\frac{n_{z_1} \pi z_1}{L}\right)

\psi_b(x_2,y_2,z_2)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_2} \pi x_2}{L}\right)Sin\left(\frac{n_{y_2} \pi y_2}{L}\right)Sin\left(\frac{n_{z_2} \pi z_2}{L}\right)

b)For identical bosons of spin 0

Ground state:
E_{111}=\frac{3\hbar^2 \pi^2}{2 m L^2}

First excited state (no degeneracy)
E_{112}=\frac{3\hbar^2 \pi^2}{ m L^2}

\psi(\vec{r_1},\vec{r_2})_{+}=A[\psi_a(x_1,y_1,z_1)\psi_b(x_2,y_2,z_2)+\psi_a(x_2,y_2,z_2)\psi_b(x_1,y_1,z_1)]

Where

\psi_a(x_1,y_1,z_1)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_1} \pi x_1}{L}\right)Sin\left(\frac{n_{y_1} \pi y_1}{L}\right)Sin\left(\frac{n_{z_1} \pi z_1}{L}\right)

\psi_b(x_2,y_2,z_2)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_2} \pi x_2}{L}\right)Sin\left(\frac{n_{y_2} \pi y_2}{L}\right)Sin\left(\frac{n_{z_2} \pi z_2}{L}\right)

\psi_a(x_2,y_2,z_2)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_1} \pi x_2}{L}\right)Sin\left(\frac{n_{y_1} \pi y_2}{L}\right)Sin\left(\frac{n_{z_1} \pi z_2}{L}\right)

\psi_b(x_1,y_1,z_1)=\left(\frac{2}{L}\right)^{\frac{2}{3}}Sin\left(\frac{n_{x_2} \pi x_1}{L}\right)Sin\left(\frac{n_{y_2} \pi y_1}{L}\right)Sin\left(\frac{n_{z_2} \pi z_1}{L}\right)

c) Identical fermions of spin 1/2

Ground state:
E_{112}=\frac{3\hbar^2 \pi^2}{m L^2}

First excited state:
E_{122}=\frac{9\hbar^2 \pi^2}{2 m L^2}

\psi(\vec{r_1},\vec{r_2})_{-}=A[\psi_a(x_1,y_1,z_1)\chi^{+}\psi_b(x_2,y_2,z_2)\chi^{+}-\psi_a(x_2,y_2,z_2)\chi^{+}\psi_b(x_1,y_1,z_1)\chi^{+}]

Wave functions are the same as in part b).

How do I distinguish between a singlet and triplet state? I know singlet is S=0, and triplet is S=1, but not quite sure what it wants.
 
Last edited:
Physics news on Phys.org


You just can't multiply the spatial wavefunctions arbitrarily by χ+ like that. The spinors themselves must have "1" and "2" subscripts.

It is easier to write the total fermion wavefunction as the product of two separate wavefunctions, one for the spatial part and one for the spin part:

ψ = (spatial)*(spin)

Because we are talking about fermions, the total wavefunction must be antisymmetric under particle exchange. This means the if the spatial part is symmetric, the spin part must be antisymmetric and vice-versa.

I note that the spin triplet state is symmetric under particle exchange while the spin singlet state is antisymmetric.
 


kuruman said:
You just can't multiply the spatial wavefunctions arbitrarily by χ+ like that. The spinors themselves must have "1" and "2" subscripts.

It is easier to write the total fermion wavefunction as the product of two separate wavefunctions, one for the spatial part and one for the spin part:

ψ = (spatial)*(spin)

Because we are talking about fermions, the total wavefunction must be antisymmetric under particle exchange. This means the if the spatial part is symmetric, the spin part must be antisymmetric and vice-versa.

I note that the spin triplet state is symmetric under particle exchange while the spin singlet state is antisymmetric.

By "1" and "2" subscripts do you mean \chi^\pm?
 


No. In your notation, the spin singlet state is

|0,0>=\frac{\chi^{+}_{1}\chi^{-}_{2}-\chi^{-}_{1}\chi^{+}_{2}}{\sqrt{2}}

and the spin triplet has states

|1,1>=\chi^{+}_{1}\chi^{+}_{2}

|1,0>=\frac{\chi^{+}_{1}\chi^{-}_{2}+\chi^{-}_{1}\chi^{+}_{2}}{\sqrt{2}}

|1,-1>=\chi^{-}_{1}\chi^{-}_{2}

Check out their properties under particle exchange. You may also wish to look them up in wikipedia.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top