Identical particles/ Time dependent perturbation theory

dreinh
Messages
2
Reaction score
0

Homework Statement


Two identical spin-1/2 particles interact with Hamiltonian H0=ω0 S1.S2 where ω0>0. A time dependent perturbation is applied, H'=ω1 (S1z-S2z) θ(t) Exp[-t/τ], where ω1>0 and ω1<<ω0. What are the probabilities that a system starting in the ground state will be excited into each of the three excited states to first order?

Homework Equations


P[initial state -> final state] = Norm[ Integrate[ < final l H'[t'] l initial > Exp[ I (Ef - Ei) t'], {t',0,t}]]^2

The Attempt at a Solution



Sorry if the statement is unclear, but I just wanted to make sure my thinking on this is correct. We have two identical fermions interacting through a spin-spin interaction, so the first thing to do in my head is to use the coupled basis states representing the particles. We only have spin interactions so spatial states aren't needed. In a non-identical particle situation, we would have four possible states:

l 1 1 > = l + +>
l 1 0 > = 1/Sqrt[2] (l + - > + l - + >)
l 0 0 > = 1/Sqrt[2] (l + - > - l - + >)
l 1 -1 > = l - - >

But since we have two identical spin-1/2 particles, only the anti-symmetric state is allowed, so our initial state must be the l 0 0 > state.

Now here is where I get confused. Our perturbation Hamiltonian is still only dependent on spin interactions, so our final state should still be one of the four kets listed above. If this is the case I don't see why all probabilities aren't zero (besides the l0 0> -> l0 0> probability) since we can't find fermions in a symmetric state. For all I know this is a trick question and I could be thinking correctly about it, but I feel like there should be some sort of computation that goes along with this.
 
Physics news on Phys.org
Why do the particles have to have the same spatial wavefunction? (This would be what restricts the system to be in the singlet state.) Is this stated in the problem? An example of a typical spin-spin interaction which gives the Hamiltonian you supplied might be that between two electrons on neighboring lattice sites in a ferromagnetic crystal (c.f. Ising model). There is no reason why the system could not be in any of the four possible states.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top