If f:[0,1] -> R is a continuous function, describe f.

irresistible
Messages
15
Reaction score
0

Homework Statement


f:[0,1] \rightarrow R is a continuous function such that
\intf(t)dt (from 0 to x) = \int f(t)dt( from x to 1) for all x\in[0,1] .
Describe f.




Homework Equations


integral represents area



The Attempt at a Solution



what ever the function is, I know that the area under the graph from 0 to x is equal to the area under the graph from x to 1.
But how else can I describe f?
 
Physics news on Phys.org
One possibility is that f(t) = 0 for all t in [0, 1]. If there are other functions, none come to mind.
 
Note that the integral is a signed area, so areas under the x-axis are negatively signed. If you draw a picture of a function that is entirely on one side of the axis (positive or negative) and start integrating from 0 to small x, it implies the remaining curve must take a nose-dive in order to account for the small amount of area between 0 and x. On the other hand, if we place x close to 1, it implies the small region between x and 1 must be higher than the previous region in order to account for the larger area, which doesn't agree with the previous scenario (or the function is the 0 function).
This implies that the function must cross the x-axis between 0 and 1 (or be the 0 function). Can you continue from there?
Another less geometric and more algebraic approach is to use the fundamental theorem of calculus to note that there exists some function F on [0,1] such that the first integral is F(x) - F(0) and the second integral is F(1) - F(x), which leads to the same conclusion.
 
I think so,Thank you
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top