MHB I'm Confused's question on Yahoo Answers involving a recurrence relation

AI Thread Summary
Jonah takes a 25 mg antibiotic every 12 hours, with 50% of the drug remaining in his body after each dose. The recursive formula for the amount of antibiotic in his bloodstream can be expressed as I_n = -50(1/2)^n + 50, where I_n represents the initial amount for each 12-hour period. Over the first two days, the calculations show that the amount of antibiotic fluctuates but approaches a steady state. In the long run, the effective amount of antibiotic in his body stabilizes at 50 mg for each 12-hour period, resulting in a final amount of 25 mg after the last dose. The discussion highlights the mathematical modeling of drug dosage while acknowledging the unrealistic assumptions about absorption rates.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Jonah must take an antibiotic every 12 hours. Each pill is 25 milligrams, and after every 12 hours, 50% of the drug remains in his body. What is the amount of antibiotic in his body over the first two days? What amount will there be in his body in the long run?

Here's what I did:

For my recursive formula, I tried inputting u(n)=u(n-1)*(1-0.50). However, I could not seem to find the long run value.,,, It keeps changing. Am I right on this?

I appreciate your help! Thank you so much!

Source: <Advanced Algebra: An Investigative Approach; Murdock Jerald, 2004>

I posted a link to this topic, so the OP could find my response.

Here is a link to the original question:

Recursive formula help on real world situations? - Yahoo! Answers

Let $A(t)$ represent the amount, in mg, of antibiotic in Jonah's bloodstream at time $t$, measured in hours. With a half-life of 12 hours, we may state:

$\displaystyle A(t)=A_02^{-\frac{t}{12}}$

So, for the first 12 hours, but not including the second dose, we find:

$\displaystyle A_0=25$ hence:

$\displaystyle A(t)=25\cdot2^{-\frac{t}{12}}$

$\displaystyle A(t)=25\cdot2^{-\frac{12}{12}}=\frac{25}{2}$

Now, for the second 12 hours, we have:

$\displaystyle A_0=\frac{25}{2}+25=\frac{75}{2}$ hence:

$\displaystyle A(t)=\frac{75}{2}\cdot2^{-\frac{t}{12}}$

$\displaystyle A(12)=\frac{75}{2}\cdot2^{-\frac{12}{12}}=\frac{75}{4}$

For the third 12 hours, we have:

$\displaystyle A_0=\frac{75}{4}+25=\frac{175}{4}$ hence:

$\displaystyle A(t)=\frac{175}{4}\cdot2^{-\frac{t}{12}}$

$\displaystyle A(12)=\frac{175}{4}\cdot2^{-\frac{12}{12}}=\frac{175}{8}$

For the fourth 12 hours, we have:

$\displaystyle A_0=\frac{175}{8}+25=\frac{375}{8}$ hence:

$\displaystyle A(t)=\frac{375}{8}\cdot2^{-\frac{t}{12}}$

$\displaystyle A(12)=\frac{375}{8}\cdot2^{-\frac{12}{12}}=\frac{375}{16}$

So, now we may try to generalize for the $n$th 12 hour period.

Let $I_n$ represent the initial amount for each 12 hour period. We see we must have the recursion:

$I_{n+1}=\frac{1}{2}I_{n}+25$

This is an inhomogeneous recurrence, so let's employ symbolic differencing to obtain a homogeneous recurrence:

$I_{n+2}=\frac{1}{2}I_{n+1}+25$

Subtracting the former from the latter, we obtain:

$2I_{n+2}=3I_{n+1}-I_{n}$

The characteristic equation is:

$2r^2-3r+1=0$

$(2r-1)(r-1)=0$

Hence, the closed-form will be:

$I_n=k_1\left(\frac{1}{2} \right)^n+k_2$

We may use our data above to determine the parameters $k_i$:

$I_1=k_1\left(\frac{1}{2} \right)^1+k_2=25$

$I_2=k_1\left(\frac{1}{2} \right)^2+k_2=\frac{75}{2}$

or

$\frac{1}{2}\cdot k_1+k_2=25$

$\frac{1}{4}\cdot k_1+k_2=\frac{75}{2}$

Solving this system, we find:

$k_1=-50,k_2=50$ and so we have:

$I_n=-50\left(\frac{1}{2} \right)^n+50=50\left(1+\left(\frac{1}{2} \right)^n \right)$

And so, for the $n$th 12 hour period, we have:

$\displaystyle A_n(t)=I_n2^{-\frac{t}{12}}$

Now, for the long run, which we may take as implying as n grows without bound, we find:

$\displaystyle \lim_{n\to\infty}I_n=50$

and so we find that for the long run the initial amount for a 12 hour period is is 50 mg and the final amount for that period is 25 mg.
 
Last edited:
Mathematics news on Phys.org
That is good mathematics, but not so great reality. If it had said I.V. Administration, the assumption of immediate absorption and distribution would be more realistic. Even subcutaneous or intramuscular injection takes a little while. A pill? No.
 
I agree completely, and even considered absorption time, but made the assumption that since no information regarding this was mentioned that we were to fudge a bit by assuming an unrealistic instantaneous absorption.:D
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top