MHB I'm Confused's question on Yahoo Answers involving a recurrence relation

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Jonah must take an antibiotic every 12 hours. Each pill is 25 milligrams, and after every 12 hours, 50% of the drug remains in his body. What is the amount of antibiotic in his body over the first two days? What amount will there be in his body in the long run?

Here's what I did:

For my recursive formula, I tried inputting u(n)=u(n-1)*(1-0.50). However, I could not seem to find the long run value.,,, It keeps changing. Am I right on this?

I appreciate your help! Thank you so much!

Source: <Advanced Algebra: An Investigative Approach; Murdock Jerald, 2004>

I posted a link to this topic, so the OP could find my response.

Here is a link to the original question:

Recursive formula help on real world situations? - Yahoo! Answers

Let $A(t)$ represent the amount, in mg, of antibiotic in Jonah's bloodstream at time $t$, measured in hours. With a half-life of 12 hours, we may state:

$\displaystyle A(t)=A_02^{-\frac{t}{12}}$

So, for the first 12 hours, but not including the second dose, we find:

$\displaystyle A_0=25$ hence:

$\displaystyle A(t)=25\cdot2^{-\frac{t}{12}}$

$\displaystyle A(t)=25\cdot2^{-\frac{12}{12}}=\frac{25}{2}$

Now, for the second 12 hours, we have:

$\displaystyle A_0=\frac{25}{2}+25=\frac{75}{2}$ hence:

$\displaystyle A(t)=\frac{75}{2}\cdot2^{-\frac{t}{12}}$

$\displaystyle A(12)=\frac{75}{2}\cdot2^{-\frac{12}{12}}=\frac{75}{4}$

For the third 12 hours, we have:

$\displaystyle A_0=\frac{75}{4}+25=\frac{175}{4}$ hence:

$\displaystyle A(t)=\frac{175}{4}\cdot2^{-\frac{t}{12}}$

$\displaystyle A(12)=\frac{175}{4}\cdot2^{-\frac{12}{12}}=\frac{175}{8}$

For the fourth 12 hours, we have:

$\displaystyle A_0=\frac{175}{8}+25=\frac{375}{8}$ hence:

$\displaystyle A(t)=\frac{375}{8}\cdot2^{-\frac{t}{12}}$

$\displaystyle A(12)=\frac{375}{8}\cdot2^{-\frac{12}{12}}=\frac{375}{16}$

So, now we may try to generalize for the $n$th 12 hour period.

Let $I_n$ represent the initial amount for each 12 hour period. We see we must have the recursion:

$I_{n+1}=\frac{1}{2}I_{n}+25$

This is an inhomogeneous recurrence, so let's employ symbolic differencing to obtain a homogeneous recurrence:

$I_{n+2}=\frac{1}{2}I_{n+1}+25$

Subtracting the former from the latter, we obtain:

$2I_{n+2}=3I_{n+1}-I_{n}$

The characteristic equation is:

$2r^2-3r+1=0$

$(2r-1)(r-1)=0$

Hence, the closed-form will be:

$I_n=k_1\left(\frac{1}{2} \right)^n+k_2$

We may use our data above to determine the parameters $k_i$:

$I_1=k_1\left(\frac{1}{2} \right)^1+k_2=25$

$I_2=k_1\left(\frac{1}{2} \right)^2+k_2=\frac{75}{2}$

or

$\frac{1}{2}\cdot k_1+k_2=25$

$\frac{1}{4}\cdot k_1+k_2=\frac{75}{2}$

Solving this system, we find:

$k_1=-50,k_2=50$ and so we have:

$I_n=-50\left(\frac{1}{2} \right)^n+50=50\left(1+\left(\frac{1}{2} \right)^n \right)$

And so, for the $n$th 12 hour period, we have:

$\displaystyle A_n(t)=I_n2^{-\frac{t}{12}}$

Now, for the long run, which we may take as implying as n grows without bound, we find:

$\displaystyle \lim_{n\to\infty}I_n=50$

and so we find that for the long run the initial amount for a 12 hour period is is 50 mg and the final amount for that period is 25 mg.
 
Last edited:
Mathematics news on Phys.org
That is good mathematics, but not so great reality. If it had said I.V. Administration, the assumption of immediate absorption and distribution would be more realistic. Even subcutaneous or intramuscular injection takes a little while. A pill? No.
 
I agree completely, and even considered absorption time, but made the assumption that since no information regarding this was mentioned that we were to fudge a bit by assuming an unrealistic instantaneous absorption.:D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top