Image of two homographic transformations (Möbius transformations)

mahler1
Messages
217
Reaction score
0
Homework Statement .

1) Let ##T## be the transformation over the extended complex plane that sends the poins ##0,i,-i## to the points ##0,1,\infty##. Prove that the image of the circle centered at the origin and of radius ##1## under this transformation is the line ##\{re(z)=1\}##.

2) For ##\alpha \in \mathbb C## such that ##|\alpha|\neq 1##, prove that the homographic transformation ##T(z)=\dfrac{z-\alpha}{-\overline\alpha z+1}## sends the circle ##\{|z|=1\}## to itself and sends ##\alpha## to ##0##.The attempt at a solution.

1) Let ##T(z)=\dfrac{az+b}{cz+d}##. Then, ##T(0)=0##, so ##b=0##. ##T(i)=1## and from this condition we get that ##ai=ci+d##, so ##a=c-di##. From the last condition we get that ##c(-i)+d=0##, so ##d=ci##. Finally, ##T(z)=\dfrac{2z}{z+i}##.

Sorry if this is obvious but how do I show that for any ##z \in \{|z|=1\}##, ##T(z)=w## with ##w## of the form ##w=1+bi##, ##b \in \mathbb R##?.

2) I have the same problem, if ##z \in \{|z|=1\}##, I want to show that ##T(z)=w## such that if ##w=a+bi##, then ##a^2+b^2=1##.

Edition:

I could solve 2), what I did was ##{T(z)}^2=T(z) \overline {T(z)}## and I could prove that the last expression equals to ##1##.

I would appreciate some help for 1).
 
Last edited:
Physics news on Phys.org
mahler1 said:
Homework Statement .

1) Let ##T## be the transformation over the extended complex plane that sends the poins ##0,i,-i## to the points ##0,1,\infty##. Prove that the image of the circle centered at the origin and of radius ##1## under this transformation is the line ##\{re(z)=1\}##.

2) For ##\alpha \in \mathbb C## such that ##|\alpha|\neq 1##, prove that the homographic transformation ##T(z)=\dfrac{z-\alpha}{-\overline\alpha z+1}## sends the circle ##\{|z|=1\}## to itself and sends ##\alpha## to ##0##.


The attempt at a solution.

1) Let ##T(z)=\dfrac{az+b}{cz+d}##. Then, ##T(0)=0##, so ##b=0##. ##T(i)=1## and from this condition we get that ##ai=ci+d##, so ##a=c-di##. From the last condition we get that ##c(-i)+d=0##, so ##d=ci##. Finally, ##T(z)=\dfrac{2z}{z+i}##.

Sorry if this is obvious but how do I show that for any ##z \in \{|z|=1\}##, ##T(z)=w## with ##w## of the form ##w=1+bi##, ##b \in \mathbb R##?.

2) I have the same problem, if ##z \in \{|z|=1\}##, I want to show that ##T(z)=w## such that if ##w=a+bi##, then ##a^2+b^2=1##.

Edition:

I could solve 2), what I did was ##{T(z)}^2=T(z) \overline {T(z)}## and I could prove that the last expression equals to ##1##.

I would appreciate some help for 1).

For 1) if you know Mobius transformations will map circles to either lines or circles then if you just compute T(1), T(i) and T(-i) and notice they are all on the line Re(z)=1 that will do it. If you want to be more explicit I'd multiply numerator and denominator of 2z/(z+i) by z* (remembering zz*=1 since |z|=1) and then use that z=a+bi where a^2+b^2=1 and convert it to rectangular form.
 
  • Like
Likes 1 person
Dick said:
For 1) if you know Mobius transformations will map circles to either lines or circles then if you just compute T(1), T(i) and T(-i) and notice they are all on the line Re(z)=1 that will do it. If you want to be more explicit I'd multiply numerator and denominator of 2z/(z+i) by z* (remembering zz*=1 since |z|=1) and then use that z=a+bi where a^2+b^2=1 and convert it to rectangular form.

Thanks Dick!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top