I Impact of atmospheric turbulence on secret key rate in QKD

Nur Ziadah
Messages
34
Reaction score
3
TL;DR Summary
Clarification on the calculation of SKR over turbulence channel.
I have the calculation on secret key rate over the turbulence channel using Python code. The calculation is as below:
Python:
import numpy as np
import math
import re
import random
import cmath 
#import itertools
from math import pi,e,log
import time
#import xlwt
import matplotlib.pyplot as plt
from scipy.interpolate import splinex=np.linspace(0,1,1000)

def log_normal(x,sigma):
    y=1/(x*sigma*np.sqrt(2*np.pi))*np.exp(-(np.log(x/0.3)+(1/2*sigma*sigma))**2/(2*sigma*sigma))

    return ydef R(x,nd,Y0,ed):
    nsys = x*nd
    QBER=((1/2*Y0)+(ed*nsys))/(Y0+nsys)
    H2=-QBER*np.log2(QBER)-(1-QBER)*np.log2(1-QBER)
    out = (Y0+nsys)*(1-(2*H2))
    return outdef out(x,nd,Y0,ed,sigma):

    term1 = log_normal(x,sigma)
    term2 = R(x,nd,Y0,ed)

    return term1*term2

hyp = (0.25,1*(10**-5), 0.03,0.9) #nd,Y0,ed,sigmalg = log_normal(x[1:],hyp[3])

r = R(x[1:],hyp[0],hyp[1],hyp[2])
plt.plot(np.log10 ( out(x,hyp[0],hyp[1],hyp[2],0.9) ),label = "sigma = 0.9" )
plt.plot(np.log10 ( out(x,hyp[0],hyp[1],hyp[2],0.3) ) ,label = "sigma = 0.3")
plt.plot(np.log10 ( out(x,hyp[0],hyp[1],hyp[2],0.6) ) ,label = "sigma = 0.6")

plt.title("Rate")
plt.legend()
plt.show()

Theoretically, the SKR is low in high turbulence (sigma=0.9) and the SKR is high in low turbulence (sigma=0.3). However, after I ran this code, I get the wrong plot:

245757


245759

From the graphs, it can be seen at y-axis that the SKR under strong turbulence is higher compared to weak turbulence and vice versa. What is the problem in my calculation? Anyone, please help me. Thank you.
 

Attachments

  • 1561622976705.png
    1561622976705.png
    3.8 KB · Views: 196
Physics news on Phys.org
I have no idea about the underlying physics but the result fits to the code you wrote.

R is the same in both cases, let's focus on log_normal(x,sigma), especially the exponential function there:

exp(-(np.log(x/0.3)+(1/2*sigma*sigma))**2/(2*sigma*sigma))
Formatted:
$$\exp\left(\frac{-(\log(x/0.3)+1/2 \,\sigma^2)^2}{2\sigma^2}\right)$$
Your x range is from 1 to 1000, let's look at 300 for example: 300/0.3 = 1000, log(1000)=3. Plug it in and simplify a bit:
$$\exp\left(\frac{-(6+\sigma^2)^2}{8\sigma^2}\right)$$ As ##\sigma<1## we can neglect the right term and get approximately $$\exp\left(\frac{-36}{8\sigma^2}\right)$$
For small ##\sigma## the exponent is very large (here is a plot) and the expression is very small.
 
  • Like
Likes Nur Ziadah
mfb said:
I have no idea about the underlying physics but the result fits to the code you wrote.

R is the same in both cases, let's focus on log_normal(x,sigma), especially the exponential function there:

exp(-(np.log(x/0.3)+(1/2*sigma*sigma))**2/(2*sigma*sigma))
Formatted:
$$\exp\left(\frac{-(\log(x/0.3)+1/2 \,\sigma^2)^2}{2\sigma^2}\right)$$
Your x range is from 1 to 1000, let's look at 300 for example: 300/0.3 = 1000, log(1000)=3. Plug it in and simplify a bit:
$$\exp\left(\frac{-(6+\sigma^2)^2}{8\sigma^2}\right)$$ As ##\sigma<1## we can neglect the right term and get approximately $$\exp\left(\frac{-36}{8\sigma^2}\right)$$
For small ##\sigma## the exponent is very large (here is a plot) and the expression is very small.
Thank you for your explanation. ;)
 
  • Like
Likes berkeman
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top